Advertisement

The AAPS Journal

, Volume 7, Issue 1, pp E259–E265 | Cite as

Cocaine- and amphetamine-regulated transcript peptides play a role in drug abuse and are potential therapeutic targets

  • Michael J. KuharEmail author
  • Jason N. Jaworski
  • George W. Hubert
  • Kelly B. Philpot
  • Geraldina Dominguez
Article

Abstract

Cocaine- and amphetamine-regulated transcript (CART) peptides (55 to 102 and 62 to 102) are neurotransmitters with important roles in a number of physiologic processes. They have a role in drug abuse by virtue of the fact that they are modulators of mesolimbic function. Key findings supporting a role in drug abuse are as follows. First, high densities of CART-containing nerve terminals are localized in mesolimbic areas. Second, CART 55 to 102 blunts some of the behavioral effects of cocaine and dopamine (DA). This functional antagonism suggests that CART peptides be considered as targets for medications development. Third, CREB in the nucleus accumbens has been shown to have an opposing effect on cocaine self-administration. CREB may activate CART expression in that region, and, if so, CART may mediate at least some of the effects of CREB. Fourth, in addition to the effects of CART on DA, DA can influence CART in the accumbens. Thus a complex interacting circuitry likely exists. Fifth, in humans, CART is altered in the ventral tegmental area of cocaine overdose victims, and a mutation in the CART gene associates with alcoholism.

Overall, it is clear that there are functional interactions among CART, DA, and cocaine and that plausible cellular mechanisms exist to explain some of these actions. Future studies will clarify and extend these findings.

Keywords

CART cocaine CREB nucleus accumbens 

References

  1. 1.
    Kuhar MJ, Adams S, Dominguez G, Jaworski J, Balkan B. CART peptides.Neuropeptides. 2002;36:1–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Hunter RG, Kuhar MJ. CART peptides as targets for CNS drug development.Curr Drug Targets CNS Neurol Disord. 2003;2:201–205.PubMedCrossRefGoogle Scholar
  3. 3.
    Jaworski JN, Vicentic A, Hunter RG, Kimmel HL, Kuhar MJ. CART peptides are modulators of mesolimbic dopamine and psychostimulants.Life Sci. 2003;73:741–747.PubMedCrossRefGoogle Scholar
  4. 4.
    Hunter RG, Philpot K, Vicentic A, Dominguez G, Hubert GW, Kuhar MJ. CART in feeding and obesity.Trends Endocrinol Metab. 2004;15:454–459.PubMedGoogle Scholar
  5. 5.
    Louis JCM. Methods of preventing neuron degeneration and promoting neuron regeneration.Amgen, International Patent Application. 1996;Publication#WO96/34619.Google Scholar
  6. 6.
    Thim L, Kristensen P, Larsen PJ, Wulff BS. CART, a new anorectic peptide.Int J Biochem Cell Biol. 1998;30:1281–1284.PubMedCrossRefGoogle Scholar
  7. 7.
    Kimmel HL, Thim L, Kuhar MJ. Activity of various CART peptides in changing locomotor activity in the rat.Neuropeptides. 2002;36:9–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Kuhar MJ, Adams LD, Hunter RG, Vechia SD, Smith Y. CART peptides.Regul Pept. 2000;89:1–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Spiess J, Villarreal J, Vale W. Isolation and sequence analysis of a somatostatin-like polypeptide from ovine hypothalamus.Biochemistry. 1981;20:1982–1988.PubMedCrossRefGoogle Scholar
  10. 10.
    Douglass J, McKinzie AA, Couceyro P. PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine.J Neurosci. 1995;15:2471–2481.PubMedGoogle Scholar
  11. 11.
    Kuhar MJ, Yoho LL. CART peptide analysis by Western blotting.Synapse. 1999;33:163–171.PubMedCrossRefGoogle Scholar
  12. 12.
    Dey A, Xhu X, Carroll R, Turck CW, Stein J, Steiner DF. Biological processing of the cocaine and amphetamine-regulated transcript precursors by prohormone convertases, PC2 and PC1/3.J Biol Chem. 2003;278:15007–15014.PubMedCrossRefGoogle Scholar
  13. 13.
    Koylu EO, Couceyro PR, Lambert PD, Ling NC, DeSouza EB, Kuhar MJ. Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland.J. Neuroendocrinol. 1997;9:823–833.PubMedCrossRefGoogle Scholar
  14. 14.
    Koylu EO, Couceyro PR, Lambert PD, Kuhar MJ. Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain.J Comp Neurol. 1998;391:115–132.PubMedCrossRefGoogle Scholar
  15. 15.
    Smith Y, Koylu EO, Couceyro P, Kuhar MJ. Ultrastructural localization of CART (cocaine-and amphetamine-regulated transcript) peptides in the nucleus accumbens of monkeys.Synapse. 1997;27:90–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Smith Y, Kieval J, Couceyro PR, Kuhar MJ. CART peptide-immunoreactive neurones in the nucleus accumbens in monkeys: ultrastructural analysis, colocalization studies, and synaptic interactions with dopaminergic afferents.J Comp Neurol. 1999;407:491–511.PubMedCrossRefGoogle Scholar
  17. 17.
    Ekblad E, Kuhar M, Wierup N, Sundler F. Cocaine-and amphetamine-regulated transcript: distribution and function in rat gastrointestinal tract.Neurogastroenterol Motil. 2003;15:545–557.PubMedCrossRefGoogle Scholar
  18. 18.
    Ellis LM, Mawe GM. Distribution and chemical coding of cocaine-and amphetamine-regulated transcript peptide (CART)-immunoreactive neurons in the guinea pig bowel.Cell Tissue Res. 2003;312:265–274.PubMedCrossRefGoogle Scholar
  19. 19.
    Wierup N, Kuhar M, Nilsson BO, Mulder H, Ekblad E, Sundler F. Cocaine- and amphetamine-regulated transcript (CART) is expressed in several islet cell types during rat development.J. Histochem Cytochem. 2004;52:169–177.PubMedGoogle Scholar
  20. 20.
    Wierup N, Yang S, McEvilly RJ, et al. Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells.J Histochem Cytochem. 2004;52:301–310.PubMedGoogle Scholar
  21. 21.
    Kobayashi Y, Jimenez-Krassel F, Li Q, et al. Evidence that cocaine- and amphetamine-regulated transcript is a novel intraovarian regulator of follicular atresia.Endocrinology. 2004;145:5373–5383.PubMedCrossRefGoogle Scholar
  22. 22.
    Dun SL, Castellino SJ, Yang J, Chang JK, Dun NJ. Cocaine- and amphetamine-regulated transcript peptide-immunoreactivity in dorsal motor nucleus of the vagus neurons of immature rats.Brain Res Dev, Brain Res. 2001;131:93–102.CrossRefGoogle Scholar
  23. 23.
    Vicentic A, Dominguez G, Hunter RG, Philpot K, Wilson M, Kuhar MJ. CART peptide levels in blood exhibit a diurnal rhythm: regulation by glucocorticoids.Endocrinology. 2004;145:4119–4124.PubMedCrossRefGoogle Scholar
  24. 24.
    Yermolaieva O, Chen J, Couceyro PR, Hoshi T. Cocaine- and amphetamine-regulated transcript peptide modulation of voltage-gated Ca2+ signaling in hippocampal neurons.J Neurosci. 2001;21:7474–7480.PubMedGoogle Scholar
  25. 25.
    Davidowa H, Li Y, Plagemann A. Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats.Eur J Neurosci. 2003;18:613–621.PubMedCrossRefGoogle Scholar
  26. 26.
    Chaki S, Kawashima N, Suzuki Y, Shimizaki T, Okuyama S. Cocaine- and amphetamine-regulated transcript peptide produces anxiety-like behavior in rodents.Eur J Pharmacol. 2003;464:49–54.PubMedCrossRefGoogle Scholar
  27. 27.
    Vrang N, Tang-Christensen M, Larsen PJ, Kristensen P. Recombinant CART peptide induces c-Fos expression in central areas involved in control of feeding behaviour.Brain Res. 1999;818:499–509.PubMedCrossRefGoogle Scholar
  28. 28.
    Murphy KG, Abbott CR, Mahmoudi M, et al. Quantification and synthesis of cocaine- and amphetamine-regulated transcript peptide (79–102)-like immunoreactivity and mRNA in rat tissues.J Endocrinol. 2000;166:659–668.PubMedCrossRefGoogle Scholar
  29. 29.
    Lambert P, Couceyro P, Koylu E, Ling N, DeSouza E, Kuhar M. A role for novel CART peptide fragments in the central control of food intake.Neuropeptides. 1997;31:620–621.Google Scholar
  30. 30.
    Lambert PD, Coucyro PR, McGirr KM, Dall Vechia SE, Smith Y, Kuhar MJ. CART peptides in the central control of feeding and interactions with neuropeptide Y.Synapse. 1998;29:293–298.PubMedCrossRefGoogle Scholar
  31. 31.
    Kristensen P, Judge ME, Thim L, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin.Nature. 1998;393:72–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Brenz Verca MS, Widmer DA, Wagner GC, Dreyer J. Cocaine-induced expression of the tetraspanin CD81 and its relation to hypothalamic function.Mol Cell Neurosci. 2001;17:303–316.PubMedCrossRefGoogle Scholar
  33. 33.
    Fagergren P, Hurd YL. Mesolimbic gender differences in peptide CART mRNA expression: effects of cocaine.Neuroreport. 1999;10:3449–3452.PubMedCrossRefGoogle Scholar
  34. 34.
    Vrang N, Larsen PJ, Kristensen P. Cocaine-amphetamine regulated transcript (CART) expression is not regulated by amphetamine.Neuroreport. 2002;13:1215–1218.PubMedCrossRefGoogle Scholar
  35. 35.
    Marie-Claire C, Laurendeau I, Canestrelli C, et al. Fos but not Cart (cocaine and amphetamine regulated transcript) is overexpressed by several drugs of abuse: a comparative study using real-time quantitative polymerase chain reaction in rat brain.Neurosci Lett. 2003;345:77–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Dallvechia-Adams S, Kuhar MJ, Smith Y. Cocaine- and amphetamine-regulated transcript peptide projections in the ventral midbrain: Colocalization with gamma-aminobutyric acid, melan in-concentrating hormone, dynorphin, and synaptic interactions with dopamine neurons.J Comp Neurol. 2002;448:360–372.PubMedCrossRefGoogle Scholar
  37. 37.
    Beaudry G, Zekki H, Rouillard C, Levesque D. Clozapine and dopamine D3 receptor antisense reduce cocaine- and amphetamine-regulated transcript expression in the rat nucleus accumbens shell.Synapse. 2004;51:233–240.PubMedCrossRefGoogle Scholar
  38. 38.
    Smith Y, Pare JF, Pare D. Cat intraamygdaloid inhibitory network: ultrastructural organization of parvalbumin-immunoreactive elements.J Comp Neurol. 1998;391:164–179.PubMedCrossRefGoogle Scholar
  39. 39.
    Tang WX, Fasulo WH, Mash DC, Hemby SE. Molecular profiling of midbrain dopamine regions in cocaine overdose victims.J Neurochem. 2003;85:911–924.PubMedCrossRefGoogle Scholar
  40. 40.
    Albertson DN, Pruetz B, Schmidt CJ, Kuhn DM, Kapatos G, Bannon MJ. Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin.J Neurochem. 2004;88:1211–1219.PubMedCrossRefGoogle Scholar
  41. 41.
    Kimmel HL, Gong W, Vechia SD, Hunter RG, Kuhar MJ. Intra-ventral tegmental area injection of rat cocaine and amphetamine-regulated transcript peptide 55–102 induces locomotor activity and promotes conditioned place preference.J Pharmacol Exp Ther. 2000;294:784–792.PubMedGoogle Scholar
  42. 42.
    Jaworski JN, Kozel MA, Philpot KB, Kuhar MJ. Intra-accumbal injection of CART (cocaine-amphetamine regulated transcript) peptide reduces cocaine-induced locomotor activity.J Pharmacol Exp Ther. 2003;307:1038–1044.PubMedCrossRefGoogle Scholar
  43. 43.
    Kim JH, Creekmore E, Vezina P. Microinjection of CART peptide 55–102 into the nucleus accumbens blocks amphetamine-induced locomotion.Neuropeptides. 2003;37:369–373.PubMedCrossRefGoogle Scholar
  44. 44.
    Shieh K. Effects of the cocaine- and amphetamine-regulated transcript peptide on the turnover of central dopaminergic neurons.Neuropharmacology. 2003;44:940–948.PubMedCrossRefGoogle Scholar
  45. 45.
    Yang S-C, Pan J-T, Li H-Y. CART peptide increases the mesolimbic dopaminergic neuronal activity: A microdialysis study.Eur J Pharmacol. 2004;494:179–182.PubMedCrossRefGoogle Scholar
  46. 46.
    Staley JK, Mash DC. Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities.J Neurosci. 1996;16:6100–6106.PubMedGoogle Scholar
  47. 47.
    Richtand NM, Logue AD, Welge JA, et al. The dopamine D3 receptor antagonist nafadotride inhibits development of locomotor sensitization to amphetamine.Brain Res. 2000;867:239–242.PubMedCrossRefGoogle Scholar
  48. 48.
    Caine SB, Koob GF, Parsons LH, Everitt BJ, Schwartz JC, Sokoloff P. D3 receptor test in vitro predicts decreased cocaine self-adminstration in rats.Neuroreport. 1997;8:2373–2377.PubMedCrossRefGoogle Scholar
  49. 49.
    Carlezon WA, Jr, Thome J, Olson VG, et al. Regulation of cocaine reward by CREB.Science. 1998;282:2272–2275.PubMedCrossRefGoogle Scholar
  50. 50.
    Dominguez G, Lakatos A, Kuhar MJ. Characterization of the cocaine- and amphetamine-regulated transcript (CART) peptide gene promoter and its activation by a cyclic AMP-dependent signaling pathway in GH3 cells.J Neurochem. 2002;80:885–893.PubMedCrossRefGoogle Scholar
  51. 51.
    Lakatos A, Dominguez G, Kuhar MJ. CART promoter CRE site binds phosphorylated CREB.Brain Res Mol Brain Res. 2002;104:81–85.PubMedCrossRefGoogle Scholar
  52. 52.
    Dominguez G, Kuhar MJ. Transcriptional regulation of the CART promoter in CATH. a cells.Brain Res Mol Brain Res. 2004;126:22–29.PubMedCrossRefGoogle Scholar
  53. 53.
    Barrett P, Morris MA, Moar KM, et al. The differential regulation of CART gene expression in a pituitary cell line and primary cell cultures of ovine pars tuberlis cells.J Neuroendocrinol. 2001;13:347–352.PubMedCrossRefGoogle Scholar
  54. 54.
    Barrett P, Davidson J, Morgan P, et al. CART gene promoter transcription is regulated by a cyclic adenosine monophosphate response element: the differential regulation of CART gene expression in a pituitary cell line and primary cell cultures of ovine pars tuberalis cells.Obes Res. 2002;10:1291–1298.PubMedCrossRefGoogle Scholar
  55. 55.
    Jung SK, Hong MS, Suh GJ, et al. Association between polymorphism in intron 1 of cocaine- and amphetamine-regulated transcript gene with alcoholism, but not with bipolar disorder and schizophrenia in Korean population.Neurosci Lett. 2004;365:54–57.PubMedCrossRefGoogle Scholar
  56. 56.
    Goeders NE. Stress and cocaine addiction.J Pharmacol Exp Ther. 2002;301:785–789.PubMedCrossRefGoogle Scholar
  57. 57.
    Goeders NE. The HPA axis and cocaine reinforcement.Psychoneuroendocrinology. 2002;27:13–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Yamada K, Yuan X, Otabe S, Koyanagi A, Koyama W, Makita Z. Sequencing of the putative promoter region of the cocaine- and amphetamine-regulated-transcript gene and identification of polymorphic sites associated with obesity.Int J Obes Relat Metab Disord. 2002;26:132–136.PubMedCrossRefGoogle Scholar
  59. 59.
    del Guidice EM, Santoro N, Cirillo G, D'Urso L, Di Toro R, Perrone L. Mutational screening of the CART gene in obese children: identifying a mutation (Leu34Phe) associated with reduced resting energy expenditure and cosegregating with obesity phenotype in a large family.Diabetes. 2001;50:2157–2160.CrossRefGoogle Scholar
  60. 60.
    Yanik T, Dominguez G, Kuhar MJ, Loh YP. Mutant Leu34Phe Pro-CART in obese humans is missorted, poorly processed and constituvely secreted in endocrine cells.Annual Meeting the Endocrine Society, ENDO 2004. 2004.Google Scholar
  61. 61.
    Asnicar MA, Smith DP, Yang DD, et al. Absence of cocaine- and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet.Endocrinology. 2001;142:4394–4400.PubMedCrossRefGoogle Scholar
  62. 62.
    Balkan B, Koylu EO, Kuhar MJ, Pogun S. The effect of adrenalectomy on cocaine and amphetamine-regulated transcript (CART) expression in the hypothalamic nuclei of the rat.Brain Res. 2001;917:15–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Balkan B, Koylu E, Pogun S, Kuhar MJ. Effects of adrenalectomy on CART expression in the rat arcuate nucleus.Synapse. 2003;50:14–19.PubMedCrossRefGoogle Scholar
  64. 64.
    Vrang N, Larsen PJ, Kristensen P, Tang-Christensen M. Central administration of cocaine-amphetamine-regulated transcript activates hypothalamic neuroendocrine neurons in the rat.Endocrinology. 2000;141:794–801.PubMedCrossRefGoogle Scholar
  65. 65.
    Sarkar S, Wittmann G, Fekete C, Lechan RM. Central administration of cocaine- and amphetamine-regulated transcript increases phosphorylation of cAMP response element binding protein in corticotropin-releasing hormone-producing neurons but not in prothyrotropin-releasing hormone-producing neurons in the hypothalamic paraventricular nucleus.Brain Res. 2004;999:181–192.PubMedCrossRefGoogle Scholar
  66. 66.
    Damaj MI, Martin BR, Kuhar MJ. Antinociceptive effects of supraspinal rat cart (55–102) peptide in mice.Brain Res. 2003;983:233–236.PubMedCrossRefGoogle Scholar
  67. 67.
    Damaj MI, Hunter RG, Martin BR, Kuhar MJ. Intrathecal CART (55–102) enhances the spinal analgesic actions of morphine in mice.Brain Res. 2004;1024:146–149.PubMedCrossRefGoogle Scholar
  68. 68.
    Ohsawa M, Dun SL, Tseng LF, Chang J, Dun NJ. Decrease of hindpaw withdrawal latency by cocaine- and amphetamine-regulated transcript peptide to the mouse spinal cord.Eur J Pharmacol. 2000;399:165–169.PubMedCrossRefGoogle Scholar
  69. 69.
    Larsen PJ, Seier V, Fink-Jensen A, Holst JJ, Warberg J, Vrang N. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit.J Neuroendocrinol. 2003;15:219–226.PubMedCrossRefGoogle Scholar
  70. 70.
    Baranowska B, Wolinska-Witort E, Chmielowska M, Martynska L, Baranowska-Bik A. Direct effects of cocaine-amphetamine-regulated transcript (CART) on pituitary hormone release in pituitary cell culture.Neuroendocrinol Lett. 2003;24:224–226.PubMedGoogle Scholar
  71. 71.
    Shieh KR. Effects of the cocaine- and amphetamine-regulated transcript peptide on the turnover of central dopaminergic neurons.Neuropharmacology. 2003;44:940–948.PubMedCrossRefGoogle Scholar
  72. 72.
    Kuriyama G, Takekoshi S, Tojo K, Nakai Y, Kuhar MJ, Osamura RY. Cocaine- and amphetamine-regulated transcript Peptide in the rat anterior pituitary gland is localized in gonadotrophs and suppresses prolactin secretion.Endocrinology. 2004;145:2542–2550.PubMedCrossRefGoogle Scholar
  73. 73.
    Brischoux F, Griffond B, Fellmann D, Risold PY. Early and transient ontogenetic expression of the cocaine- and amphetamine-regulated transcript peptide in the rat mesencephalon: correlation with tyrosine hydroxylase expression.J Neurobiol. 2002;52:221–229.PubMedCrossRefGoogle Scholar
  74. 74.
    Hunter R, Kuhar M. Dopaminergic regulation of CART mRNA in the nucleus accumbens.Soc Neurosci Abs. 2003;889:21.Google Scholar
  75. 75.
    Abarca C, Albrecht U, Spanagel R. Cocaine sensitization and reward are under the influence of circadian genes and rhythm.Proc Natl Acad Sci USA. 2002;99:9026–9030.PubMedCrossRefGoogle Scholar
  76. 76.
    Elias CF, Lee C, Kelly J, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord.Neuron. 1998;21:1375–1385.PubMedCrossRefGoogle Scholar
  77. 77.
    Thiel G, Cibelli G. Corticotropin-releasing factor and vasoactive intestinal polypeptide activate gene transcription through the cAMP signaling pathway in a catecholaminergic immortalized neuron.Neurochem Int. 1999;34:183–191.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2005

Authors and Affiliations

  • Michael J. Kuhar
    • 1
    Email author
  • Jason N. Jaworski
    • 1
  • George W. Hubert
    • 1
  • Kelly B. Philpot
    • 1
  • Geraldina Dominguez
    • 1
  1. 1.Yerkes National Primate Research CenterEmory UniversityAtlanta

Personalised recommendations