The AAPS Journal

, Volume 7, Issue 1, pp E20–E41 | Cite as

Carrier-based strategies for targeting protein and peptide drugs to the lungs

  • Sally-Ann CryanEmail author


With greater interest in delivery of protein and peptide-based drugs to the lungs for topical and systemic activity, a range of new devices and formulations are being investigated. While a great deal of recent research has focused on the development of novel devices, attention must now be paid to the formulation of these macromolecular drugs. The emphasis in this review will be on targeting of protein/peptide drugs by inhalation using carriers and ligands.


Protein, peptide inhalation liposomes microspheres targeting 


  1. 1.
    Gonda I. Peptides and Proteins-Pulmonary Absorption.Encyclopedia of Pharmaceutical Technology. Second Edition, New York, NY. Marcel Dekker; 2002;2114–2124.Google Scholar
  2. 2.
    Hickey A. Summary of common approaches to pharmaceutical aerosol administration. In: Hickey AJ ed.Pharmaceutical Inhalation Aerosol Technology. New York, NY: Marcel Dekker Inc; 2004:385–422.Google Scholar
  3. 3.
    Cipolla D, Clark AR, Chan H-K, et al. Assessment of aerosol delivery system for recombinant human deoxyribonuclease.STP Pharma Sci. 1994;4:50–62.Google Scholar
  4. 4.
    Niven R. Delivery of biotherapeutics by inhalation aerosols.Pharm Technol. 1993;17:72–81.Google Scholar
  5. 5.
    Schuster J, Rubsamen R, Lloyd P, Lloyd J. The AERx aerosol delivery system.Pharm Res. 1997;14:354–357.PubMedCrossRefGoogle Scholar
  6. 6.
    Newman SP, Steed K, Ptwose L, Zierenberg B. The BINEB (final prototype): a novel hand-held multidose nebuliser evaluated by gamma scintigraphy.Eur. Respir. J. 1996;9:441S.Google Scholar
  7. 7.
    Perera AD, Kapitza C, Nosek L, et al. Absorption and metabolic effect of inhaled insulin: intrapatient variability after inhalation via the Aerodose insulin inhaler in patients with type 2 diabetes.Diabetes Care. 2002;25:2276–2281.PubMedCrossRefGoogle Scholar
  8. 8.
    Geller DE. New liquid aerosol generation devices: systems that force pressurized liquids through nozzles.Respir Care. 2002;47(12):1392–1404; discussion 1404–1395.PubMedGoogle Scholar
  9. 9.
    Geller D, Thipphawong J, Otulana B, et al. Bolus inhalation of rhDNase with the AERx system in subjects with cystic fibrosis.J Aerosol Med. 2003;16:175–182.PubMedCrossRefGoogle Scholar
  10. 10.
    Farr S, Reynolds D, nat A, Srinivasan S, Roach M, Jensen S. Technical development of AERx diabetes management system: essential characteristics for diabetes treatment with pulmonary insulin. In: Dalby R, Byron PR, Peart J, Farr SJ, eds.Respiratory Drug Delivery VIII. Raleigh, NC: Davis Horwood International Publishing; 2002;51–59.Google Scholar
  11. 11.
    Henry RR, Mudaliar SR, Howland WC III, et al. Inhaled insulin using the AERx Insulin Diabetes Management System in healthy and asthmatic subjects.Diabetes Care. 2003;26:764–769.PubMedCrossRefGoogle Scholar
  12. 12.
    Banga A.Therapeutic Reptides and Proteins: Formulation, Processing and Delivery. Lancaster, PA: Techtomic Publishing Company Inc.; 1995.Google Scholar
  13. 13.
    Cipolla D, Farr SJ, Gonda I, Otulana B. Delivery of biologics to the lung. In: Hansel TT, Barnes PJ, eds.New Drugs for Asthma. Allergy and COPD. Prog. Respir Ress. Basel: Switzerland: Karger. 2001;31:20–23.CrossRefGoogle Scholar
  14. 14.
    Adjei A, Sundberg D, Muller J, Chun A. Bioavailability of leuprolide acetate following nasal and inhalation delivery to rats and healthy humans.Pharm Res. 1992;9:244–249PubMedCrossRefGoogle Scholar
  15. 15.
    Brambilla G, Berrill S, Davies RJ. Formulation of leuprolide as an HFA solution pMDI. Paper presented at:14th Congress International Society for Aerosols in Medicine; June, 2003; Baltimore, MD.Google Scholar
  16. 16.
    Brown A, Slusser JG. Propellant-driven aerosols of functional proteins as potential therapeutic agents in the respiratory tract.Immunopharmacology. 1994;28:241–257.PubMedCrossRefGoogle Scholar
  17. 17.
    Brown A, Pickrell JA. Propellant-driven aerosols for delivery of proteins in the respiratory tract.J Aerosol Med. 1995;8:43–57.PubMedGoogle Scholar
  18. 18.
    Nakate T, Yoshida H, Ohike A, Tokunaga Y, Ibuki R, Kawashima Y. Improvement of pulmonary absorption of cyclopeptide FK224 in rats by co-formulating with beta-cyclodextrin.Eur J Pharm Biopharm. 2003;55:147–154.PubMedCrossRefGoogle Scholar
  19. 19.
    Crommelin D. Formulation of Biotech Products, Including Biopharmaceutical Considerations. In: Crommelin DJ, ed.Pharmaceutical Biotechnology, London, UK; Taylor and Francis; 1997.Google Scholar
  20. 20.
    Patton J, Trinchero P, Platz RM. Bioavailability of pulmonary delivered peptides and proteins: alpha-interferon, calcitonins and parathyroid hormones.J Control Release. 1994;28:79–85.CrossRefGoogle Scholar
  21. 21.
    Patton J, Plantz RM. Pulmonary delivery of peptides and proteins for systemic action.J Control Release. 1994;28:79–85.CrossRefGoogle Scholar
  22. 22.
    Clark A, Shire SJ. Pulmonary delivery technology: recent advances and potential for the new millenium. In: Hickey AJ ed.Pharmaceutical Inhalation Aerosol Technology, New York, NY: Marcel Dekker; 2004: 571–592.Google Scholar
  23. 23.
    Wolff R. Safety of inhaled proteins for therapeutic use.J Aerosol Med. 1998;11:197–219.PubMedGoogle Scholar
  24. 24.
    Cefalu W, Balagtas CC, Landschulz WH, Gelfand RA. Sustained efficacy and pulmonary safety of inhaled insulin during two years of outpatient therapy [abstract].Diabetes. 2000;49(Suppl 1):A101.Google Scholar
  25. 25.
    Myers MA, Thomas DA, Straub L, et al. Pulmonary effects of chronic exposure to liposome aerosols in mice.Exp. Lung Res. 1993;19:1–19.PubMedCrossRefGoogle Scholar
  26. 26.
    Dokka S, Toledo D, Shi X, Castranova V, Rojanasakul Y. Oxygen radical mediated pulmonary toxicity induced by some cationic liposomes.Pharm Res. 2000;17:521–525.PubMedCrossRefGoogle Scholar
  27. 27.
    Curti P, Genghini M. Role of surfactant in alveolar defense against inhaled particles.Respiration (Herrlisheim). 1989;55:(Suppl 1):60–67.Google Scholar
  28. 28.
    Clark A, Shire SJ. Formulation of proteins for pulmonary delivery. In: McNally E. ed.Protein Formulation and Delivery. New York, NY: Marcels Dekker; 2000:201–234.Google Scholar
  29. 29.
    Hickey AJ, Garcia-Contreras L. Immunological and toxicological implications of short-term studies in animals of pharmaceutical aerosol delivery to the lungs: relevance to humans.Crit Rev Ther Drug Carrier Syst. 2001;18:387–431.PubMedGoogle Scholar
  30. 30.
    Heinemann L, Klappoth W, Rave K, Hompesch B, Linkeschowa R, Heise T. Intra-individual variability of the metabolic effect of inhaled insulin together with an absorption enhancer.Diabetes Care. 2000;23:1343–1347.PubMedCrossRefGoogle Scholar
  31. 31.
    Yamamoto A, Okumura S, Fukuda Y, Fukui M, Takahashi K, Muranishi S. Improvement of the pulmonary absorption of (Asu 1,7)-eel calcitonin by various absorption enhancers and their pulmonary toxicity in rats.J Pharm Sci. 1997;86:1144–1147.PubMedCrossRefGoogle Scholar
  32. 32.
    Crommelin D, Schreier H. Liposomes. In: Kreuter J, ed.Colloidal Drug Delivery Systems. New York, NY: Marcel Dekker; 1994; 73–190.Google Scholar
  33. 33.
    Zeng X, Martin CG, Marriott C. The controlled delivery of drugs to the lung.Int J Pharm. 1995;124:149–164.CrossRefGoogle Scholar
  34. 34.
    Suarez S, Gonzalez-Rothi RJ, Schreier H, Hochhaus G. Effect of dose and release rate on pulmonary targeting of liposomal triamcinolone acetonide phosphate.Pharm Res. 1998;15:461–465.PubMedCrossRefGoogle Scholar
  35. 35.
    Fielding R, Ahra RM. Factors affecting the release rate of terbutaline from liposome formulations after intratracheal instillation in the guinea pig.Pharm Res. 1992;9:220–223.PubMedCrossRefGoogle Scholar
  36. 36.
    Lasic D.Liposomes in Gene Delivery. Boca Raton, FL: CRC Press; 1997.Google Scholar
  37. 37.
    Canonico AE, Plitman JD, Conary JT, Meyrick BO, Brigham KL. No lung toxicity after repeated aerosol or intravenous delivery of plasmidcationic liposome complexes.J Appl Physiol. 1994;77:415–419.PubMedGoogle Scholar
  38. 38.
    Eastman S, Tousignant JD, Lukason MJ, et al. Optimisation of formulations and conditions for the aerosol delivery of functional cationic lipids: DNA complex.Hum Gene Ther. 1997;8:313–322.PubMedCrossRefGoogle Scholar
  39. 39.
    McLachlan G, Davidson DJ, Stevenson BJ, et al. Evaluation in vitro and in vivo of cationic liposome-expression construct complexes for cystic fibrosis gene therapy.Gene Ther. 1995;2:614–622.PubMedGoogle Scholar
  40. 40.
    McCluskie MJ, Chu Y, Xia JL, Jessee J, Gebyehu G, Davis HL. Direct gene transfer to the respiratory tract of mice with pure plasmid and lipid-formulated DNA.Antisense Nucleic Acid Drug Dev. 1998;8:401–414.PubMedGoogle Scholar
  41. 41.
    Zou Y, Zong G, Ling YH, Perez-Soler R. Development of cationic liposome formulations for intratracheal gene therapy of early lung cancer.Cancer Gene Ther. 2000;7:683–696.PubMedCrossRefGoogle Scholar
  42. 42.
    Stribling R, Brunette E, Liggitt D, Gaensler K, Debs R. Aerosol gene delivery in vivo.Proc Natl Acad Sci USA. 1992;89:11277–11281.PubMedCrossRefGoogle Scholar
  43. 43.
    Gregoriadis G.Liposome Technology. Boca Raton, FL: CRC Press Inc; 1984.Google Scholar
  44. 44.
    Schreier H, Mobley WC, Concessio N, Hickey AJ, Niven RW. Formulation and in vitro performance of liposome powder aerosols.STP Pharma Sciences. 1994;4:38–44.Google Scholar
  45. 45.
    Niven R, Schreier H. Nebulization of liposomes. I. Effect of lipid composition.Pharm Res. 1990;7:1127–1133.PubMedCrossRefGoogle Scholar
  46. 46.
    Desai T, Hancock REW, Finaly WH. A facile method of delivery of liposomes by nebulization.J Control Release. 2002;84:69–78.PubMedCrossRefGoogle Scholar
  47. 47.
    Niven R, Speer M, Schreier H. Nebulization of liposomes. II. The effects of size and modeling of solute release profiles.Pharm Res. 1991; 8:217–221.PubMedCrossRefGoogle Scholar
  48. 48.
    Niven R, Carvajal TM, Schreier H. Nebulization of liposomes. III. The effects of operating conditions and local environment.Pharm Res. 1992;9:515–520.PubMedCrossRefGoogle Scholar
  49. 49.
    Joshi M, Misra A. Dry powder inhalation of liposomal Ketotifen fumarate formulation and characterisation.Int J Pharm. 2001;223:15–27.PubMedCrossRefGoogle Scholar
  50. 50.
    Skalko-Basnet N, Pavelic Z, Becirevic-Lacan M. Liposomes containing drug and cyclodextrin prepared by the one-step spray-drying method.Drug Dev Ind Pharm. 2000;26:1279–1284.PubMedCrossRefGoogle Scholar
  51. 51.
    Seville PC, Kellaway IW, Brichall JC. Preparation of dry powder dispersions for non-viral gene delivery by freeze-drying and spray-drying.J Gene Med. 2002;4:428–437.PubMedCrossRefGoogle Scholar
  52. 52.
    Kim J-C, Kim J-D. Preparation by spray-drying of amphotericin B-phospholipid composite particles and their anticellular activity.Drug Deliv. 2001;8:143–147.PubMedCrossRefGoogle Scholar
  53. 53.
    Kellaway I, Farr, SJ. Liposomes as drug delivery systems to the lung.Adv Drug Deliv Rev. 1990;5:149–161.CrossRefGoogle Scholar
  54. 54.
    Lo YL, Rahman YE. Protein location in liposomes, a drug carrier: a prediction by differential scanning calorimetry.J Pharm Sci. 1995;84:805–814.PubMedCrossRefGoogle Scholar
  55. 55.
    Colletier JP, Chaize B, Winterhalter M, Fournier D. Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer.BMC Biotechnol. 2002;2:1–8.CrossRefGoogle Scholar
  56. 56.
    Galovic Rengel R, Barisic K, Pavelic Z, Zanic Grubisic T, Cepelak I, Filipovic-Greic J. High efficiency entrapment of superoxide dismutase into mucoadhesive chitosan-coated liposomes.Eur J Pharm Sci. 2002;15:441–448.PubMedCrossRefGoogle Scholar
  57. 57.
    Wagner A, Vorauer-Uhl K, Kreismayr G, Katinger H. Enhanced protein loading into liposomes by the multiple crossflow injection technique.J Liposome Res. 2002;12:259–270.PubMedCrossRefGoogle Scholar
  58. 58.
    Morimoto Y, Adachi Y. Pulmonary uptake of liposomal phosphatidylcholine upon intratracheal administration to rats.Chem Pharm Bull (Tokyo). 1982;30:2248–2251.Google Scholar
  59. 59.
    Oyarzun MJ, Clements JA, Baritussio A. Ventilation enhances pulmonary alveolar clearance of radioactive dipalmitoyl phosphatidylcholine in liposomes.Am Rev Respir Dis. 1980;121:709–721.PubMedGoogle Scholar
  60. 60.
    Papahadjopoulos D, Poste G, Schaeffer BE. Fusion of mammalian cells by unilamellar lipid vesicles: influence of lipid surface charge, fluidity and cholesterol.Biochim Biophys Acta. 1973;323:23–42.PubMedCrossRefGoogle Scholar
  61. 61.
    Letsou GV, Safi HJ, Reardon MJ, et al. Pharmacokinetics of liposomal aerosolized cyclosporine A for pulmonary immunosuppression.Ann Thorac Surg. 1999;68:2044–2048.PubMedCrossRefGoogle Scholar
  62. 62.
    Arppe J, Vidgren M, Waldrep JC. Pulmonary pharmacokinetics of cyclosporin A liposomes.Int J Pharm. 1998;161:205–214.CrossRefGoogle Scholar
  63. 63.
    Padmanabhan RV, Gudapaty R, Liener IE, Schwartz BA, Hoidal JR. Protection against pulmonary oxygen toxicity in rats by the intratracheal administration of liposome-encapsulated superoxide dismutase or catalase.Am Rev Respir Dis. 1985;132:164–167.PubMedGoogle Scholar
  64. 64.
    Li Y, Mitra AK. Effects of phospholipid chain length, concentration, charge, and vesicle size on pulmonary insulin absorption.Pharm Res.. 1996;13:76–79.PubMedCrossRefGoogle Scholar
  65. 65.
    Bot AI, Tarara TE, Smith DJ, Bot SR, Woods CM, Weers JG. Novel lipid-based hollow-porous microparticles as a platform for immunoglobulin delivery to the respiratory tract.Pharm Res. 2000;17:275–283.PubMedCrossRefGoogle Scholar
  66. 66.
    Hutchinson FG, Furr BJ. Biodegradable polymers for controlled release of peptides and proteins.Horiz Biochem Biophys. 1989;9:111–129.PubMedGoogle Scholar
  67. 67.
    Ehrhardt C, Fiegel J, Fuchs S, et al. Drug absorption by the respiratory mucosa: cell culture models and particulate drug carriers.J Aerosol. Med. 2002;15:131–139.PubMedCrossRefGoogle Scholar
  68. 68.
    Bhat M. Development of a novel spray-drying technique to produce particles for aerosol delivery. In: Dalby R, Byron PR, Peart J, Farr SJ, eds.Respiratory Drug Delivery XIII. Raleigh, NC: Davis Horwood International Publishing; 2002:427–429.Google Scholar
  69. 69.
    Kawashima Y, Yamamoto H, Takeuchi H, Fujioka S, Hino T. Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect.J Control Release. 1999;62:279–287.PubMedCrossRefGoogle Scholar
  70. 70.
    Surendrakumar K, Martyn GP, Hodgers ECM, Jansen M, Blair JA. Sustained release of insulin from sodium hyaluronate based dry powder formulations after pulmonary delivery to beagle dogs.J Control Release. 2003;91:385–394.PubMedCrossRefGoogle Scholar
  71. 71.
    Garcia-Contreras L, Morcol T, Bell SJ, Hickey AJ. Evaluation of novel particles as pulmonary delivery systems for insulin in rats.AAPS Pharm Sci. 2003;5:E9.CrossRefGoogle Scholar
  72. 72.
    Blair J, Coghlan D, Langner E, Jansen M, Askey-Sarvar A. Sustained delivery of insulin via the lung using Solidose technology. In: Dalby R, Byron PR, Peart J, Farr SJ, eds.Respiratory Drug Delivery VIII. Raleigh, NC: Davis Horwood International Publishing Ltd. 2002.411–414.Google Scholar
  73. 73.
    Cheng YS, Yazzie D, Gao J, Muggli D, Etter J, Rosenthal GJ. Particle characteristics and lung deposition patterns in a human airway replica of a dry powder formulation of polylactic acid produced using supercritical fluid technology.J Aerosol Med. 2003;16:65–73.PubMedCrossRefGoogle Scholar
  74. 74.
    Dhiman N, Khuller GK. Protective efficacy of mycobacterial 71-kDa cell wall associated protein using poly (DL-lactide-co-glycolide) microparticles as carrier vehicles.FEMS Immunol Med Microbiol. 1998;21:19–28.PubMedGoogle Scholar
  75. 75.
    Evora C, Soriano I, Rogers RA, Shakesheff KN, Hanes J, Langer R. Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine.J Control Release. 1998;51:143–152.PubMedCrossRefGoogle Scholar
  76. 76.
    Fiegel J, Ehrhardt C, Schaefer UF, Lehr CM, Hanes J. Large porous particle impingement on lung epithelial cell monolayers-toward improved particle characterization in the lung.Pharm Res. 2003;20:788–796.PubMedCrossRefGoogle Scholar
  77. 77.
    Bittner B, Kissel T. Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres.J Microencapsul. 1999;16:325–341.PubMedCrossRefGoogle Scholar
  78. 78.
    Plowman S, Langner E, Blair J. Elucidation of insulin release mechanism from OED microparticles using ATR-FTIR. In: Dalby R, Byron PR, Peart J, Farr SJ eds.Respiratory Drug Delivery XIII. Raleigh, NC: Davis Horwood International Publishing; 2002:423–426.Google Scholar
  79. 79.
    Takeuchi H, Yamamoto H, Kawashima Y. Mucoadhesive nanoparticulate systems for peptide drug delivery.Adv Drug Deliv Rev. 2001;47:39–54.PubMedCrossRefGoogle Scholar
  80. 80.
    Brown L, Rashba-Step J, Scott T, et al. Pulmonary delivery of novel insulin microspheres. In: Dalby R, Byron PR, Peart J, Farr SJ, eds.Respiratory Drug Delivery XIII. Raleigh, NC: Davis Horwood International Publishing; 2002:431–433.Google Scholar
  81. 81.
    Bot AI, Smith DJ, Bot S, et al. Receptor-mediated targeting of spraydried lipid particles coformulated with immunoglobulin and loaded with a prototype vaccine.Pharm Res. 2001;18:971–979.PubMedCrossRefGoogle Scholar
  82. 82.
    Steiner S, Pfutzner A, Wilson BR, Harzer O, Heinemann L, Rave K. Technosphere/Insulin-proof of concept study with a new insulin formulation for pulmonary delivery.Exp Clin Endocrinol Diabetes. 2002;110:17–21.PubMedCrossRefGoogle Scholar
  83. 83.
    Edwards DA, Hanes J, Caponetti G, et al. Large porous particles for pulmonary drug delivery.Science. 1997;276:1868–1871.PubMedCrossRefGoogle Scholar
  84. 84.
    Langer R. Drug delivery and targeting.Nature. 1998;392:(suppl 6679), 5–10.PubMedGoogle Scholar
  85. 85.
    Tabata Y, Ikada Y. Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers.J Biomed Mater Res. 1988;22:837–858.PubMedCrossRefGoogle Scholar
  86. 86.
    Tsapis N, Bennett D, Jackson B, Weitz D, Edwards DA. Trojan particles: large porous nanoparticle systems for drug delivery.Proc Natl Acad Sci USA. 2002;99:12001–12005.PubMedCrossRefGoogle Scholar
  87. 87.
    Backstrom KGE, Dahlback CMO, Edman P, Johansson ACB.Therapeutic Preparation for Inhalation. August 6, 1997: US Patent 6306440.Google Scholar
  88. 88.
    Platz R, Utsumi J, Satoh Y, Naruse N. Pharmaceutical aerosol formulation of solid polypeptide microparticles and method for the preparation thereof. 1991: World Patent 9, 116,038.Google Scholar
  89. 89.
    Platz R, Ip A, Whitham CL. Process for preparing micronized polypeptide drugs. February 16, 1994: US Patent 5,354,562.Google Scholar
  90. 90.
    Li S, Patapoff TW, Overcashier D, Hsu C, Nguyen TH, Borchardt RT. Effects of reducing sugars on the chemical stability of human relaxin in the lyophilized state.J Pharm Sci. 1996;85:873–877.PubMedCrossRefGoogle Scholar
  91. 91.
    Dubost DC, Kaufman MJ, Zimmerman JA, Bogusky MJ, Coddington AB, Pitzenberger SM. Characterization of a solid state reaction product from a lyophilized formulation of a cyclic heptapeptide: a novel example of an excipient-induced oxidation.Pharm Res. 1996;13:1811–1814.PubMedCrossRefGoogle Scholar
  92. 92.
    Quan C, Wu S, Hsu C, Canova-Davis E.Protein Sci., 4 (suppl), 490T. Paper presented at: In Ninth Symposium of the Protein Society. July 1995, Boston, MA (no title available).Google Scholar
  93. 93.
    Klink DT, Glick MC, Scanlin TF. Gene therapy of cystic fibrosis (CF) airways: a review emphasizing targeting with lactose.Glycoconj J. 2001;18:731–740.PubMedCrossRefGoogle Scholar
  94. 94.
    Klink DT, Chao S, Glick MC, Scanlin TF. Nuclear translocation of lactosylated poly-L-lysine/cDNA complex in cystic fibrosis airway epithelial cells.Mol Ther. 2001;3:831–841.PubMedCrossRefGoogle Scholar
  95. 95.
    Hardy J, Crew P, Osborne P, Whitfield N. Clinical Evaluation of Inhaled Insulin Stabilised with Trehalose. In: Dalby R, Byron PR, Peart J, Farr SJ, eds.Respiratory Drug Delivery VIII. Raleigh, NC: Davis Horwood International Publishing; 2002:415–417.Google Scholar
  96. 97.
    Kobayashi S, Kondo S, Juni K. Pulmonary delivery of salmon calcitonin dry powders containing absorption enhancers in rats.Pharm Res. 1996;13:80–83.PubMedCrossRefGoogle Scholar
  97. 98.
    Byron PR, Naini V, Phillips EM. Drug Carrier Selection-Important Physicochemical Characteristics. In: Dalby R, Byron PR, Farr SJ, eds.Respiratory Drug Delivery V. Raleigh, NC: Davis Horwood International Publishing: 1996 Vol. 1, 103–114.Google Scholar
  98. 99.
    Winters MA, Knutson BL, Debenedetti PG, et al. Precipitation of proteins in supercritical carbon dioxide.J Pharm Sci. 1996;85:586–594.PubMedCrossRefGoogle Scholar
  99. 100.
    Sellers SP, Clark GS, Sievers RE, Carpenter JF. Dry powders of stable protein formulations from aqueous solutions prepared using supercritical CO(2)-assisted aerosolization.J Pharm Sci. 2001;90:785–797.PubMedCrossRefGoogle Scholar
  100. 101.
    Hickey A, Concessio NM, Van Oot MM, Platz RM. Factors influencing the dispersion of dry powders as aerosols.Pharm Tech. 1994;18:58–82.Google Scholar
  101. 102.
    Maa YF, Nguyen PA, Sweeney T, Shire SJ, Hsu CC. Protein inhalation powders: spray drying vs spray freeze drying.Pharm Res. 1999;16:249–254.PubMedCrossRefGoogle Scholar
  102. 103.
    Rajewski R, Stella V. Pharmaceutical Applications of cyclodextrins. II. In vivo drug delivery.J Pharm Sc. 1996;85:1142–1169.CrossRefGoogle Scholar
  103. 104.
    Hussain A, Yang T, Zaghloul AA, Ahsan F. Pulmonary absorption of insulin mediated by tetradecyl-beta-maltoside and dimethyl-beta-cyclodextrin.Pharm Res. 2003;20:1551–1557.PubMedCrossRefGoogle Scholar
  104. 105.
    Gonda I. Targeting by deposition. In: Hickey AJ, ed.Pharmaceutical Inhalation Aerosol Technology, New York, NY: Marcel Dekker, 2003. 65–88.Google Scholar
  105. 106.
    Hickey AJ, Gonda I, Irwin WJ, Fildes FJ. Effect of hydrophobic coating on the behavior of a hygroscopic aerosol powder in an environment of controlled temperature and relative humidity.J Pharm Sci. 1990;79:1009–1014.PubMedCrossRefGoogle Scholar
  106. 107.
    Suarez S, Hickey AJ. Drug properties affecting aerosol behavior.Respir Care. 2000;45:652–666.PubMedGoogle Scholar
  107. 108.
    Devereux TR, Domin BA, Philpot RM. Xenobiotic metabolism by isolated pulmonary cells.Pharmacol Ther. 1989;41:243–256.PubMedCrossRefGoogle Scholar
  108. 109.
    Todisco T, Dottorini M, Palumbo R, et al. Fate of human albumin microsphere and spherocyte radioaerosols in the human tracheobronchial tree.Lung. 1990;168:(suppl), 665–671.PubMedCrossRefGoogle Scholar
  109. 110.
    Sanders N, De Smedt SC, Van Romaey E, Simoens P, De Baets F, Demeester J. Cystic fibrosis sputum: a barrier to the transport of nanospheres.Am J Respir Crit Care Med. 2000;162:1905–1911.PubMedGoogle Scholar
  110. 111.
    Bhat P, Flanagan DR, Donovan MD. Drug diffusion through cystic fibrotic mucus: steady-state permeation, rheologic properties, and glycoprotein morphology.J Pharm Sci. 1996;85:624–630.PubMedCrossRefGoogle Scholar
  111. 112.
    Niven R. Modulated drug therapy with inhalation aerosols. In: Hickey AJ, ed.Pharmaceutical Inhalation Aerosols Technology. New York, NY: Marcel Dekker; 2003:551–570.Google Scholar
  112. 113.
    Klonne DR, Dodd DE, Losco PE, Troup CM, Tyler TR. Two-week aerosol inhalation study on polyethylene glycol (PEG) 3350 in F-344 rats.Drug Chem Toxicol. 1989;12:39–48.PubMedCrossRefGoogle Scholar
  113. 114.
    Niven RW, Whitcomb KL, Shaner L, Ip AY, Kinstler OB. The pulmonary absorption of aerosolized and intratracheally instilled rhG-CSF and monoPEGylated rhG-CSF.Pharm Res. 1995;12:1343–1349.PubMedCrossRefGoogle Scholar
  114. 115.
    Tang G, White JE, Gordon RJ, Lumb PD, Tsan MF. Polyethylene glycol-conjugated superoxide dismutase protects rats against oxygen toxicity.J Appl Physiol. 1993;74:1425–1431.PubMedGoogle Scholar
  115. 116.
    Jost PJ, Harbottle RP, Knight A, Miller AD, Coutelle C, Schneider H. A novel peptide, THALWHT, for the targeting of human airway epithelia.FEBS Lett. 2001;489:263–269.PubMedCrossRefGoogle Scholar
  116. 117.
    Wu M, Pasula R, Smith PA, Martin WJ. Mapping alveolar binding sites in vivo using phage peptide libraries.Gene Ther. 2003;10:1429–1436.PubMedCrossRefGoogle Scholar
  117. 118.
    Mi Z, Mai J, Lu X, Robbins PD. Characterization of a class of cationic peptides able to facilitate efficient protein transduction in vitro and in vivo.Mol Ther. 2000;2:339–347.PubMedCrossRefGoogle Scholar
  118. 119.
    Rajotte D, Ruoslahti E. Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display.J Biol Chem. 1999;274:11593–11598.PubMedCrossRefGoogle Scholar
  119. 120.
    Yi SM, Harson RE, Zabner J, Welsh MJ. Lectin binding and endocytosis at the apical surface of human airway epithelia.Gene Ther. 2001;8:1826–1832.PubMedCrossRefGoogle Scholar
  120. 121.
    Bruck A, Abu-Dahab R, Borchard G, Schafer UF, Lehr CM. Lectin-functionalized liposomes for pulmonary drug delivery: interaction with human alveolar epithelial cells.J Drug Target. 2001;9:241–251.PubMedGoogle Scholar
  121. 122.
    Abu-Dahab R, Schafer UF, Lehr CM. Lectin-functionalized liposomes for pulmonary drug delivery: effect of nebulization on stability and bioadhesion.Eur J Pharm Sci. 2001;14:37–46.PubMedCrossRefGoogle Scholar
  122. 123.
    Fransson LA. Self-association of bovine lung heparan sulphates: identification and characterization of contact zones.Eur J Biochem. 1981;120:251–255.PubMedCrossRefGoogle Scholar
  123. 124.
    Vaccaro CA, Brody JS. Structural features of alveolar wall basement membrane in the adult rat lung.J Cell Biol. 1981;91:427–437.PubMedCrossRefGoogle Scholar
  124. 125.
    Cryan S, Devocelle M, Foley V, Hickey AJ, Kelly JG. Enhanced liposomal delivery to airway cells using cell-penetrating peptides. In: Dalby R, Byron PR, Peart J, Farr SJ, eds.Respiratory Drug Delivery IX. Raleigh, NC: Davis Horwood International Publishing; 2004: 793–796.Google Scholar
  125. 126.
    Strayer MS, Guttentag SH, Ballard PL. Targeting type II and Clara cells for adenovirus-mediated gene transfer using the surfactant protein B promoter.Am J Respir Cell Mol Biol. 1998;18:1–11.PubMedGoogle Scholar
  126. 127.
    Jones BG, Dickinson PA, Gumbleton M, Kellaway IW. Lung surfactant phospholipids inhibit the uptake of respirable microspheres by the alveolar macrophage NR8383.J Pharm Pharmacol. 2002;54:1065–1072.PubMedCrossRefGoogle Scholar
  127. 128.
    Jones BG, Dickinson PA, Gumbleton M, Kellaway IW. The inhibition of phagocytosis of respirable microspheres by alveolar and peritoneal macrophages.Int J Pharm. 2002;236:65–79.PubMedCrossRefGoogle Scholar
  128. 129.
    Sibille Y, Reynolds HY. Macrophages and polymorphonuclear neutrophils in lung defense and injury.Am Rev Respir Dis. 1990;141:471–501.PubMedGoogle Scholar
  129. 130.
    Kaplan J, Ward DM. Movement of receptors and ligands through the endocytic apparatus in alveolar macrophages.Am J Physiol. 1990;258:L263-L270.PubMedGoogle Scholar
  130. 131.
    Robbins JC, Lam MH, Tripp CS, Bugianesi RL, Ponpipom MM, Shen TY. Synthetic glycopeptide substrates for receptor-mediated endocytosis by macrophages.Proc Natl Acad Sci USA. 1981;78:7294–7298.PubMedCrossRefGoogle Scholar
  131. 132.
    Tietze C, Schlesinger P, Stahl P. Mannose-specific endocytosis receptor of alveolar macrophages: demonstration of two functionally distinct intracellular pools of receptor and their roles in receptor recycling.J Cell Biol. 1982;92:417–424.PubMedCrossRefGoogle Scholar
  132. 133.
    Derrien D, Midoux P, Petit C, et al. Muramyl dipeptide bound to poly-L-lysine substituted with mannose and gluconoyl residues as macrophage activators.Glycoconj J. 1989;6:241–255.PubMedCrossRefGoogle Scholar
  133. 134.
    Liang WW, Shi X, Deshpande D, Malanga CJ, Rojanasakul Y. Oligonucleotide targeting to alveolar macrophages by mannose receptor-mediated endocytosis.Biochim Biophys Acta. 1996;1279:227–234.PubMedCrossRefGoogle Scholar
  134. 135.
    Harrison J, Shi X, Wang L, Ma JK, Rojanasakul Y. Novel delivery of antioxidant enzyme catalase to alveolar macrophages by Fc receptor-mediated endocytosis.Pharm Res. 1994;11:1110–1114.PubMedCrossRefGoogle Scholar
  135. 136.
    Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents.Adv Drug Deliv Rev. 2002;54:675–693.PubMedCrossRefGoogle Scholar
  136. 137.
    Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump.Clin Cancer Res. 2000;6:1949–1957.PubMedGoogle Scholar
  137. 138.
    Frederiksen KS, Abrahamsen N, Cristiano RJ, Damstrup L, Poulsen HS. Gene delivery by an epidermal growth factor/DNA polyplex to small cell lung cancer cell lines expressing low levels of epidermal growth factor receptor.Cancer Gene Ther. 2000;7:262–268.PubMedCrossRefGoogle Scholar
  138. 139.
    Cristiano RJ, Roth JA. Epidermal growth factor mediated DNA delivery into lung cancer cells via the epidermal growth factor receptor.Cancer Gene Ther. 1996;3:4–10.PubMedGoogle Scholar
  139. 140.
    Moreira JN, Hansen CB, Gaspar R, Allen TM. A growth factor antagonist as a targeting agent for sterically stabilized liposomes in human small cell lung cancer.Biochim Biophys Acta. 2001;1514:303–317.PubMedCrossRefGoogle Scholar
  140. 141.
    Lundberg M, Wikstrom S, Johansson M, Cell surface adherence and endocytosis of protein transduction domains.Mol Ther. 2003;8:143–150.PubMedCrossRefGoogle Scholar
  141. 142.
    Pouton CW, Seymour LW. Key issues in non-viral gene delivery.Adv Drug Deliv Rev. 2001;46:187–203.PubMedCrossRefGoogle Scholar
  142. 143.
    Zelphati O, Wang Y, Kitada S, Reed JC, Felgner PL, Corbeil J. Intracellular delivery of proteins with a new lipid-mediated delivery system.J Biol Chem. 2001;276:35103–35110.PubMedCrossRefGoogle Scholar
  143. 144.
    Tinsley JH, Hawker J, Yuan Y. Efficient protein transfection of cultured coronary venular endothelial cells.Am J Physiol. 1998;275:H1873-H1878.PubMedGoogle Scholar
  144. 145.
    Briscoe P, Caniggia I, Graves A, et al. Delivery of superoxide dismutase to pulmonary epithelium via pH-sensitive liposomes.Am J Physiol. 1995;268:L374-L380.PubMedGoogle Scholar
  145. 146.
    Yanagihara K, Cheng PW. Lectin enhancement of the lipofection efficiency in human lung carcinoma cells.Biochim Biophys Acta. 1999;1472:25–33.PubMedGoogle Scholar
  146. 147.
    Fajac I, Briand P, Monsigny M, Midoux P. Sugar-mediated uptake of glycosylated polylysines and gene transfer into normal and cystic fibrosis airway epithelial cells.Hum Gene Ther. 1999;10:395–406.PubMedCrossRefGoogle Scholar
  147. 148.
    Fajac I, Thevenot G, Bedouet L, et al. Uptake of plasmid/glycosylated polymer complexes and gene transfer efficiency in differentiated airway epithelial cells.J Gene Med. 2003;5:38–48.PubMedCrossRefGoogle Scholar
  148. 149.
    Kreda SM, Pickles RJ, Lazarowski ER, Boucher RC. G-protein-coupled receptors as targets for gene transfer vectors using natural small-molecule ligands.Nat Biotechnol. 2000;18:635–640.PubMedCrossRefGoogle Scholar
  149. 150.
    Yanagihara K, Cheng H, Cheng PW. Effects of epidermal growth factor, transferrin, and insulin on lipofection efficiency in human lung carcinoma cells.Cancer Gene Ther. 2000;7:59–65.PubMedCrossRefGoogle Scholar
  150. 151.
    Mastrobattista E, Storm G, van Bloois L, et al. Cellular uptake of liposomes targeted to intercellular adhesion molecule-1 (ICAM-1) on bronchial epithelial cells.Biochim Biophys Acta. 1999;1419:353–363.PubMedCrossRefGoogle Scholar
  151. 152.
    Suzuki T, Futaki S, Niwa M, Tanaka S, Ueda K, Sugiura Y. Possible existence of common internalization mechanisms among arginine-rich peptides.J Biol Chem. 2002;277:2437–2443.PubMedCrossRefGoogle Scholar
  152. 153.
    Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent.J Biol Chem. 1996;271:18188–18193.PubMedCrossRefGoogle Scholar
  153. 154.
    Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus.J Biol Chem. 1997;272:16010–16017.PubMedCrossRefGoogle Scholar
  154. 155.
    Phelan A, Elliott G, O'Hare P. Intercellular delivery of functional p53 by the herpes virus protein VP22.Nat Biotechnol. 1998;16:440–443.PubMedCrossRefGoogle Scholar
  155. 156.
    Schwarze SR, Dowdy SF. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA.Trends Pharmacol Sci. 2000;21:45–48.PubMedCrossRefGoogle Scholar
  156. 157.
    Liu XH, Castelli JC, Youle RJ. Receptor-mediated uptake of an extracellular Bel-x(L) fusion protein inhibits apoptosis.Proc Natl Acad Sci USA. 1999;96:9563–9567.PubMedCrossRefGoogle Scholar
  157. 158.
    Hawiger J. Noninvasive intracellular delivery of functional peptides and proteins.Curr Opin Chem Biol. 1999;3:89–94.PubMedCrossRefGoogle Scholar
  158. 159.
    Kurten RC. Sorting motifs in receptor trafficking.Adv Drug Deliv Rev. 2003;55:1405–1419.PubMedCrossRefGoogle Scholar
  159. 160.
    Hasegawa S, Hirashima N, Nakanishi M. Microtubule involvement in the intracellular dynamics for gene transfection mediated by cationic liposomes.Gene Ther. 2001;8:1669–1673.PubMedCrossRefGoogle Scholar
  160. 161.
    Legendre JY, Szoka FC, Jr. Delivery of plasmid DNA into mammalian cell lines using pH-sensitive liposomes: comparison with cationic liposomes.Pharm Res. 1992;9:1235–1242.PubMedCrossRefGoogle Scholar
  161. 162.
    Zuidam NJ, Barenholz Y. Electrostatic and structural properties of complexes involving plasmid DNA and cationic lipids commonly used for gene delivery.Biochim Biophys Acta. 1998;1368:115–128.PubMedCrossRefGoogle Scholar
  162. 163.
    Felgner JH, Kumar R, Sridhar CN, et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations.J Biol Chem. 1994;269:2550–2561.PubMedGoogle Scholar
  163. 164.
    Pedroso de Lima M, Simoes S, Pires P, Faneca H, Duzgunes N. Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications.Adv Drug Deliv Rev. 2001;47:277–294.PubMedCrossRefGoogle Scholar
  164. 165.
    Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene tranfer systems.J Biol Chem. 1994;269:12918–12924.PubMedGoogle Scholar
  165. 166.
    Wagner E, Plank C, Zatloukal M, Cotten M, Birnstiel ML. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin polylysine/DNA complexes: towards a synthetic virus-like gene transfer vehicle.Proc Natl Acad Sci USA. 1992;89:7934–7938.PubMedCrossRefGoogle Scholar
  166. 167.
    Gottschalk S, Sparrow JT, Hauer J, et al. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells.Gene Ther. 1996;3:48–57.Google Scholar
  167. 168.
    Haensler J, Szoka FC Jr. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture.Bioconjug Chem. 1993;4:372–379.PubMedCrossRefGoogle Scholar
  168. 169.
    Kabanov A, Kabanov VA. DNA complexes with polycations for the delivery of genetic material into cells.Bioconjug Chem. 1995;6:7–20.PubMedCrossRefGoogle Scholar
  169. 170.
    Boussif O, Lezoule'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine.Proc Natl Acad Sci USA. 1995;92:7297–7301.PubMedCrossRefGoogle Scholar
  170. 171.
    Bulmus V, Woodward M, Lin L, Murthy N, Stayton P, Hoffman A. A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs.J Control Release. 2003;93:105–120.PubMedCrossRefGoogle Scholar
  171. 172.
    Lackey C, Press O, Hoffman A, Stayton P. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex.Bioconjug Chem. 2002;13:996–1001.PubMedCrossRefGoogle Scholar
  172. 173.
    Pouton CW. Nuclear import of polypeptides, polynucleotides and supramolecular complexes.Adv Drug Deliv Rev. 1998;34:51–64.PubMedCrossRefGoogle Scholar
  173. 174.
    Yoneda Y, Semba T, Kaneda Y, et al. A long synthetic peptide containing a nuclear localization signal and its flanking sequences of SV40 T-antigen directs the transport of IgM into the nucleus efficiently.Exp Cell Res. 1992;201:313–320.PubMedCrossRefGoogle Scholar
  174. 175.
    Dworetzky SI, Lanford RE, Feldherr CM. The effects of variations in the number and sequence of targeting signals on nuclear uptake.J Cell Biol. 1988;107:1279–1287.PubMedCrossRefGoogle Scholar
  175. 176.
    Aronsohn AI, Hughes JA. Nuclear localization signal peptides enhance cationic liposome-mediated gene therapy.J Drug Target. 1998;5:163–169.PubMedGoogle Scholar
  176. 177.
    Schneeberger EE. Structural basis for some permeability properties of the air-blood barrier.Fed Proc. 1978;37:2471–2478.PubMedGoogle Scholar
  177. 178.
    Sayani AP, Chien YW. Systemic delivery of peptides and proteins across absorptive mucosae.Crit Rev Ther Drug Carrier Syst. 1996;13:85–184.PubMedGoogle Scholar
  178. 179.
    Shen Z, Zhang Q, Wei S, Nagai T. Proteolytic enzymes as a limitation for pulmonary absorption of insulin: in vitro and in vivo investigations.Int J Pharm. 1999;192:115–121.PubMedCrossRefGoogle Scholar
  179. 180.
    Fukuda Y, Tsuji T, Fujita T, Yamamoto A, Muranishi S. Susceptibility of insulin to proteolysis in rat lung homogenate and its protection from proteolysis by various protease inhibitors.Biol Pharm Bull. 1995;18:891–894.PubMedGoogle Scholar
  180. 181.
    Shao Z, Li Y, Chermak T, Mitra AK. Cyclodextrins as mucosal absorption promoters of insulin. II. Effects of beta-cyclodextrin derivatives on alpha-chymotryptic degradation and enteral absorption of insulin in rats.Pharm Res. 1994;11:1174–1179.PubMedCrossRefGoogle Scholar
  181. 182.
    Yamamoto A, Okumura S, Fukuda Y, Fukui M, Takahashni K, Muranishi S. Improvement of the pulmonary absorption of (ASU)-Eel calcitonin by various absorption enhancers and their pulmonary toxicity in rats.J Pharm Sci. 1997;86:1144–1147.PubMedCrossRefGoogle Scholar
  182. 183.
    Kobayashi S, Kondo S, Juni K. Study on pulmonary delivery of salmon calcitonin in rats: effects of protease inhibitors and absorption enhancers.Pharm Res. 1994;11:1239–1243.PubMedCrossRefGoogle Scholar
  183. 184.
    Liu FY, Shao Z, Kildsig DO, Mitra AK. Pulmonary delivery of free and liposomal insulin.Pharm Res. 1993;10:228–232.PubMedCrossRefGoogle Scholar
  184. 185.
    Agu RU, Ugwoke MI, Armand M, Kinget R, Verbeke N. The lung as a route for systemic delivery of therapeutic proteins and peptides.Respir Res. 2001;2:198–209.PubMedCrossRefGoogle Scholar
  185. 186.
    Gumbleton M. Caveolae as potential macromolecule trafficking compartments within alveolar epithelium.Adv Drug Deliv Rev. 2001;49:281–300.PubMedCrossRefGoogle Scholar
  186. 187.
    Forbes B, Wilson CG, Gumbleton M. Temporal dependence of ectopeptidase expression in alveolar epithelial cell culture: implications for study of peptide absorption.Int J Pharm. 1999;180:225–234.PubMedCrossRefGoogle Scholar
  187. 188.
    Khanna C, Hasz DE, Klausner JS, Anderson PM. Aerosol delivery of interleukin 2 liposomes is nontoxic and biologically effective: canine studies.Clin Cancer Res. 1996;2:721–734.PubMedGoogle Scholar
  188. 189.
    Griffiths GD, Phillips GJ, Bailey SC. Comparison of the quality of protection elicited by toxoid and peptide liposomal vaccine formulations against ricin as assessed by markers of inflammation.Vaccine. 1999;17:2562–2568.PubMedCrossRefGoogle Scholar
  189. 190.
    Morimoto K, Katsumata H, Yabuta T, et al. Gelatin microspheres as a pulmonary delivery system: evaluation of salmon calcitonin absorption.J Pharm Pharmacol. 2000;52:611–617.PubMedCrossRefGoogle Scholar
  190. 191.
    Scott T, Sullivan A, Proos R, et al. Novel technology for fabrication of therapeutic microspheres for pulmonary delivery. In: Dalby R, Byron PR, Peart J, Farr SJ, eds.Respiratory Drug Delivery VIII. Raleigh, NC: Davis Horwood Internationl Publishing; 2002:435–437.Google Scholar
  191. 192.
    Pfutzner A, Mann AE, Steiner SS. Technosphere/Insulin—a new approach for effective delivery of human insulin via the pulmonary route.Diabetes Technol Ther. 2002;4:589–594.PubMedCrossRefGoogle Scholar
  192. 193.
    Allo JC, Midoux P, Merten M, et al. Efficient gene transfer into human normal and cystic fibrosis tracheal gland serous cells with synthetic vectors.Am J Respir Cell Mol Biol. 2000;22:166–175.PubMedGoogle Scholar
  193. 194.
    Fajac I, Grosse S, Briand P, Monsigny M. Targeting of cell receptors and gene transfer efficiency: a balancing act.Gene Ther. 2002;9:740–742.PubMedCrossRefGoogle Scholar
  194. 195.
    Rojanasakul Y, Wang LY, Malanga CJ, Ma JK, Liaw J. Targeted gene delivery to alveolar macrophages via Fe receptor-mediated endocytosis.Pharm Res. 1994;11:1731–1736.PubMedCrossRefGoogle Scholar
  195. 196.
    Ross GF, Morris RE, Ciraolo G, et al. Surfactant protein A-polylysine conjugates for delivery of DNA to airway cells in culture.Hum Gene Ther. 1995;6:31–40.PubMedCrossRefGoogle Scholar
  196. 197.
    Walther FJ, David-Cu R, Supnet MC, Longo ML, Fan BR, Bruni R. Uptake of antioxidants in surfactant liposomes by cultured alveolar type II cells is enhanced by SP-A.Am J Physiol. 1993;265:L330-L339.PubMedGoogle Scholar
  197. 198.
    Gladysheva IP, Moroz NA, Karmakova TA, Nemtsova ER, Yakubovskaya RI, Larionova NI. Immunoconjugates of soybean Bowman-Birk protease inhibitor as targeted antitumor polymeric agents.J Drug Target. 2001;9:303–316.PubMedCrossRefGoogle Scholar
  198. 199.
    Schneider H, Harbottle RP, Yokosaki Y, Jost P, Coutelle C. Targeted gene delivery into alpha9betal-integrin-displaying cells by a synthetic peptide.FEBS Lett. 1999;458:329–332.PubMedCrossRefGoogle Scholar
  199. 200.
    Scott ES, Wiseman JW, Evans MJ, Colledge WH. Enhanced gene delivery to human airway epithelial cells using an integrin-targeting lipoplex.J Gene Med. 2001;3:125–134.PubMedCrossRefGoogle Scholar
  200. 201.
    Torchilin VP. TAT peptide-modified liposomes for intracellular delivery of drugs and DNA.Cell Mol Biol Lett. 2002;7:265–267.PubMedGoogle Scholar
  201. 202.
    Reddy JA, Low PS. Folate-mediated targeting of therapeutic and imaging agents to cancers.Crit Rev Ther Drug Carrier Syst. 1998;15:587–627.PubMedGoogle Scholar
  202. 203.
    Deshpande D, Toledo-Velasquez D, Wang LY, Malanga CJ, Ma JK, Rojanasakul Y. Receptor-mediated peptide delivery in pulmonary epithelial monolayers.Pharm Res. 1994;11:1121–1126.PubMedCrossRefGoogle Scholar
  203. 204.
    Rudolph C, Schillinger U, Plank C, et al. Nonviral gene delivery to the lung with copolymer-protected and transferrin-modified polyethylenimine.Biochim Biophys Acta. 2002;1573:75–83.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2005

Authors and Affiliations

  1. 1.School of PharmacyRoyal College of Surgeons in IrelandDublin 2Ireland

Personalised recommendations