The psychobiology of emotion: the role of the oxytocinergic system

  • Kerstin Uvnäs-Moberg
  • Ingemar Arn
  • David Magnusson
Article

Abstract

A necessary condition for the individual’;s survival is the capacity for mental, behavioral, and physiological adaptation to external and internal conditions. Consequently, the integrated organism strives to maintain a dynamic, functional balance and integrity under varying conditions. Effective individual adaptation processes are basically dependent on the functioning of the integrated psychophysiological system.

In humans, the brain plays a fundamental role in these processes. It serves the adaptation of individuals to current and anticipated conditions by selecting, interpreting, and transforming information into mental, behavioral, and physiological responses. In doing so, the incoming information is linked to existing structures of emotions, values, and goals. Consequently, the interpretation of external information may vary and become subjective depending on an individual’s present and past experiences (see e.g., Magnusson, 2003).

Hitherto, empirical research has been mainly concerned with the aspect of the psychophysiological system, which is activated in situations that are perceived by the individual as threatening, harmful, or demanding and in which the fight—flight and stressresponsesdescribedbyCannon(1929)andSelye(1976)playanimportantrole. The aim of this article is to draw attention to a component of the psychophysiological system, the calm and connection system, underlying well-being and socialization. By including this new system, the model of the integrated individual becomes more complete and it enriches the understanding of emotional aspects of brain functioning.

Key words

calmness connection response oxytocin emotions positive development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ågren, G., Lundeberg, T., Uvnäs-Moberg, K., & Sato, A. (1995). The oxytocin antagonist 1-deamino—2-D-Tyr-(Oet)—4-Thr—8- Orn-oxytocin reverses the increase in the withdrawal response latency to thermal, but not mechanical nociceptive stimuli following oxytocin administration or massage-like stroking in rats. Neuroscience Letters, 187, 49–52.PubMedCrossRefGoogle Scholar
  2. Amico, J. A., Mantella, R. C., Vollmer, R. R., & Li, X. (2004). Anxiety and stress responses in female oxytocin deficient mice. J Neuroendocrinology, 16, 319–324.CrossRefGoogle Scholar
  3. Arletti, R., & Bertolini, A. (1987). Oxytocin as an antidepressant in twoanimalmodelsofdepression. LifeSciences, 41, 1725–1730.Google Scholar
  4. Barker, D. J. P. (1998). In utero programming of chronic disease. Clinical Science, 95, 115–128.PubMedCrossRefGoogle Scholar
  5. Caldij, C., Diorio, J., & Meaney, M. J. (2000). Variations in maternal care in infancy regulate the development of stress reactivity. Biological Psychiatry, 15, 1164–1174.CrossRefGoogle Scholar
  6. Cannon, W. B. (1929). Bodily changes in pain, hunger, fear and rage. New York: Appleton.Google Scholar
  7. Carmichael, M. S., Humbert, R., Dixen, J., Palmisano, G., Greenleaf, W., & Davidson, J. M. (1987). Plasma oxytocin increases in the human sexual response. Journal of Clinical Endocrinology and Metabolism, 64, 27–31.PubMedCrossRefGoogle Scholar
  8. Carter, C. S. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 23, 779–818.PubMedCrossRefGoogle Scholar
  9. Champagne, F., & Meaney, M. J. (2001). Like mother, like daughter. Evidence for nongenomic transmission of parental behavior and stress responsitivity. Progress in Brain Research, 133, 287–302.PubMedCrossRefGoogle Scholar
  10. Choleris, E., Gustafsson, J. A., Korach, K. S., Muglia, L. J., Pfaff, D. W., & Ogawa, S. (2003). An estrogen-dependent four-gene micronet regulating social recognition: A study with oxytocin and estrogoen receptor-alpha and-beta knockout mice. Proceedings of the National Academy of Science, 13, 6192–7.CrossRefGoogle Scholar
  11. Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. Journal of the American Medical Association, 267, 1244–1252.PubMedCrossRefGoogle Scholar
  12. Cowen, E. L. (1991). In pursuit of wellness. American Psychologist, 46, 404–408.CrossRefGoogle Scholar
  13. Darwin, C. (1873). The expression of emotions in man and animals. New York: Appleton.Google Scholar
  14. Díaz-Cabiale, Z., Petersson, M., Narváez, J. A., Uvnäs-Moberg, K., & Fuxe, K. (2000). Systemic oxytocin treatment modulates alpha2/adrenoceptors in telencephalic and diencephalic regions of the rat. Brain Research, 887, 421–425.PubMedCrossRefGoogle Scholar
  15. Ferguson, J. N., Aldag, J. M., Insel, T. R., & Young, L. J. (2001). Oxytocin in the medial amygdala is essential for social recognition in the mouse. Journal of Neuroscience, 158, 278–285.Google Scholar
  16. Ferguson, J. N., Young, L. J., Harn, E. F., Nazuk, M. M., Insel, T. R., & Winslow, J. T. (2000). Social amnesia in mice lacking the oxytocin gene. Nature Genetics, 25, 284–288.PubMedCrossRefGoogle Scholar
  17. Heinrichs, M., Neumann, I., & Ehlert, U. (2002). Lactation and stress: Protective effects of breastfeeding in humans. Stress, 5, 195–203.PubMedGoogle Scholar
  18. Insel, T. R. (1992). Oxytocin—A neuropeptide for affiliation: Evidence from behavioral, receptor autoradiographic and comparative studies. Psychoneuroendocrinology, 17, 3–35.PubMedCrossRefGoogle Scholar
  19. Holst, S., Uvnäs-Moberg, K., & Petersson, M. (2000). Postnatal oxytocin treatment and postnatal stroking of rats reduce blood pressure in adulthood. Autonomic Neuroscience, 30, 85–90.Google Scholar
  20. Kendrick, K. M., Keverne, E. B., Baldwin, B. A., & Sharman, D. F. (1986). Cerebrospinal fluid levels of acetylcholinesterase, monoamines and oxytocin during labour, parturition, vaginocervical stimulation, lamb separation and suckling in sheep. Neuroendocrinology, 44, 149–156.PubMedCrossRefGoogle Scholar
  21. Knox, S. S., & Uvnäs-Moberg, K. (1998). Social isolation and cardiovascular disease: An atherosclerotic pathway? Psychoneuroendocrinology, 23, 877–890.PubMedCrossRefGoogle Scholar
  22. Lund, I., Lundeberg, T., Kurosawa, M., & Uvnäs-Moberg, K. (1999). Sensory stimulation (massage) reduces blood pressure in unanaesthetized rats. Journal of theAutonomic Nervous System, 78, 30–37.CrossRefGoogle Scholar
  23. Lund, I., Yu, L. C., Uvnäs-Moberg, K., Wang, J., Yu, C., Kurosawa, M., Ågren, G., Rosen, A., Lekman, M., & Lundeberg, T. (2002). Repeated massage-like stimulation induces long-term effects on nociception: Contribution of oxytocinergic mechanisms. European Journal of Neuroscience, 16, 330–338.PubMedCrossRefGoogle Scholar
  24. Magnusson, D. (2001). The holistic-interactionistic paradigm: Some directions for empirical developmental research. European Psychologist, 6, 153–162.CrossRefGoogle Scholar
  25. Magnusson, D. (2003). The person approach: Concepts, measurement models, and research strategies. New Directions in Child Development (Special issue), 101, 3–23.CrossRefGoogle Scholar
  26. Magnusson, D., & Mahoney, J. L. (2002). A holistic person approach for research on positive development. In G. Aspinwall & U. M. Staudinger (Eds.), A psychology of human strengths: Fundamental questions and future directions for a positive psychology (pp. 227–243). Washington, DC: American Psychological Association.Google Scholar
  27. Mason, J. W. (1968a). A review of psychoendocrine research on the sympathetic-adrenal medullary system. Psychosomatic Medicine, 30, 631–653.PubMedGoogle Scholar
  28. Mason, J. W. (1968b). A review of psychoendocrine research on the pituitary-adrenal cortical system. Psychosomatic Medicine, 30, 567–597.Google Scholar
  29. McCarthy, M. M., & Altemus, M. (1997). Central nervous system actions of oxytocin and modulation of behavior in humans. Molecular Medicine Today, 3, 269–275.PubMedCrossRefGoogle Scholar
  30. Nissen, E., Gustavsson, P., Widström, A. M., & Uvnäs-Moberg, K. (1998). Oxytocin, prolactin, milk production and their relationship with personality traits in women after vaginal delivery or cesarean section. Journal of Psychosomatic Obstetrics and Gynaecology, 19, 49–58.PubMedCrossRefGoogle Scholar
  31. Nissen, E., Uvnäs-Moberg, K., Svensson, K., Stock, S., Widstr öm, A. M., & Winberg, J. (1996). Different patterns of oxytocin, prolactin but not cortisol release during breastfeeding in women delivered by caesarean section or by the vaginal route. Early Human Development, 45, 103–118.PubMedCrossRefGoogle Scholar
  32. Petersson, M., Ahlenius, S., Wiberg, U., Alster, P., & Uvnäs-Moberg, K. (1998a). Steroid dependent effects of oxytocin on spontaneous motor activity in female rats. Brain Research Bulletin, 45, 301–305.PubMedCrossRefGoogle Scholar
  33. Petersson, M., Alster, P., Lundeberg, T., & Uvnäs-Moberg, K. (1996a).Oxytocincausesalong-term decreaseofbloodpressure infemaleandmalerats. Physiology & Behavior, 60, 1311–1315.CrossRefGoogle Scholar
  34. Petersson, M., Alster, P., Lundeberg, T., & Uvnäs-Moberg, K. (1996b). Oxytocin increases nociceptive thresholds in a long-term perspective in female and male rats. Neuroscience Letters, 212, 87–90.PubMedCrossRefGoogle Scholar
  35. Petersson, M., Hulting, A. L., Andersson, R., & Uvnäs-Moberg, K. (1999c). Long-term changes in gastrin, cholecystokinin and insulin in response to oxytocin treatment. Neuroendocrinology, 69, 202–208.PubMedCrossRefGoogle Scholar
  36. Petersson, M., Hulting, A.-L., & Uvnäs-Moberg, K. (1999a). Oxytocin causes a sustained decrease in plasma levels of corticosterone in rats. Neuroscience Letters, 264, 41–44.PubMedCrossRefGoogle Scholar
  37. Petersson, M., Lundeberg, T., Sohlström, A., Wiberg, U., & Uvnäs-Moberg, K. (1998b). Oxytocin increases the survival of musculocutaneous flaps. Naunyn-Schmiedeberg’s Archives of Pharmacology, 357, 701–704.PubMedCrossRefGoogle Scholar
  38. Petersson, M., Lundeberg, T., & Uvnäs-Moberg, K. (1999b). Oxytocin enhances the effects of clonidine on blood pressure and locomotor activity in rats. Journal of the Autonomic Nervous System, 78, 49–56.PubMedCrossRefGoogle Scholar
  39. Petersson, M., Uvnäs-Moberg, K., Erhardt, S., & Engberg, G. (1998c). Oxytocin increases locus coeruleus alpha 2-adrenoceptor responsiveness in rats. Neuroscience Letters, 255, 115–118.PubMedCrossRefGoogle Scholar
  40. Rajkowski, J., Kubiak, P., Ivanova, S., & Aston Jones, G. (1998). State related activity, reactivity of locus coeruleus neurons in behaving monkeys. In D. Goldstein, G. Eisenhofer, & T. McCarty (Eds.), Advances in pharmacology, catecholamines bridging basic science with clinical medicine (pp. 740–744). San Diego, CA: Academic.Google Scholar
  41. Richard, P., Moos, F., & Freund-Mercier, M.-J. (1991). Central effects of oxytocin. Physiology Review, 71, 331–370.Google Scholar
  42. Ryff, C. D., & Singer, B. (1998). The contours of positive human health. Psychological Inquiry, 9, 1–28.CrossRefGoogle Scholar
  43. Sansone, G. R., Gerdes, C. A., Steinman, J. L., Winslow, J. T., Ottenweller, J. E., Komisaruk, B. R., & Insel, T. R. (2002). Vaginocervical stimulation releases oxytocin within the spinal cord in rats. Neuroendocrinology, 75, 306–315.PubMedCrossRefGoogle Scholar
  44. Selye, H. (1976). Stress in health and disease. Boston: Butterworths.Google Scholar
  45. Sofroniew, M. W. (1983). Vasopressin and oxytocin in the mammalian brain and spinal cord. Trends in Neuroscience, 6, 467–472.CrossRefGoogle Scholar
  46. Sohlstöm, A., Carlsson, C., & Uvnäs-Moberg, K. (2000). Effects of oxytocin treatment in early life on body weight and corticosterone in adult offspring from ad libitum fed and food restricted rats. Biology of the Neonate, 78, 33–40.CrossRefGoogle Scholar
  47. Stock, S., & Uvnäs-Moberg, K. (1988). Increased plasma levels of oxytocin in response to afferent electrical stimulation of the sciatic and vagal nerves and in response to touch and pinch in anaesthetized rats. Acta Physiologica Scandinavica, 132, 29–34.PubMedGoogle Scholar
  48. Taylor, S. E., Klein, L. C., Gruenewald, T. L., Gurung, R. A., & Updegraffe, J. A. (2002). Biobehavioural responses to stress in females: Tend and befriend, not fight-flight. Psychological Review, 107, 411–429.CrossRefGoogle Scholar
  49. Teicher, M. H. (2002, March). Scars that won’t heal: The neurobiology of child abuse. Scientific American, 286, 54–61.CrossRefGoogle Scholar
  50. Turner, R. A., Altemus, M., Enos, T., Cooper, B., & McGuiness, T. (1999). Preliminary research on plasma oxytocin in normal cycling women: Investigating emotion and interpersonal distress. Psychiatry, 62, 97–113.PubMedGoogle Scholar
  51. Uvnäs-Moberg, K. (1997). Oxytocin-linked antistress effects—the relaxation and growth response. Acta Physiologica Scandinavica, 161(Suppl. 640), 38–42.Google Scholar
  52. Uvnäs-Moberg, K. (1998a). Antistress pattern induced by oxytocin. News in Physiological Sciences, 13, 22–26.PubMedGoogle Scholar
  53. Uvnäs-Moberg, K. (1998b). Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology, 23, 819–825.PubMedCrossRefGoogle Scholar
  54. Uvnäs-Moberg, K. (2003). The oxytocin factor: Tapping the hormone of calm, love and healing. Boston: Perseus.Google Scholar
  55. Uvnäs-Moberg, K., Ahlenius, S., Hillegaart, V., & Alster, P. (1994). High doses of oxytocin cause sedation and low doses cause an anxiolytic-like effect in male rats. Pharmacology, Biochemistry, and Behavior, 49, 101–106.PubMedCrossRefGoogle Scholar
  56. Uvnäs-Moberg, K., Alster, P., Hillegaart, V., & Ahlenius, S. (1992). Oxytocin reduces exploratory motor behavior and shifts the activity towards the centre of the arena in male rats. Acta Physiologica Scandinavica, 145, 429–430.PubMedGoogle Scholar
  57. Uvnäs-Moberg, K., Alster, P., & Petersson, M. (1996a). Dissociation of oxytocin effects on body weight on two variants of female Sprague-Dawley rats. Integrative Physiological and Behavioral Science, 31, 44–55.PubMedCrossRefGoogle Scholar
  58. Uvnäs-Moberg, K., Alster, P., Lund, I., Lundeberg, T., Kurosawa, M., & Ahlenius, S. (1996b). Stroking of the abdomen causes decreased locomotor activity in conscious male rats. Physiology & Behavior, 60, 1409–1411.CrossRefGoogle Scholar
  59. Uvnäs-Moberg, K., Björkstrand, E., Hillegaart, V., & Ahlenius, S. (1999). Oxytocin as a possible mediator of SSRI-induced antidepressant effects. Psychopharmacology. 142, 95–101.PubMedCrossRefGoogle Scholar
  60. Uvnäs-Moberg, K., Bruzelius, G., Alster, P., & Lundeberg, T. (1993). The antinociceptive effect of non-noxious sensory stimulation is mediated partly through oxytocinergic mechanisms. Acta Physiologica Scandinavica, 149, 199–204.PubMedGoogle Scholar
  61. Uvnäs-Moberg, K., Eklund, M., Hillegaart, V., & Ahlenius, S. (2000). Improved conditioned avoidance learning by oxytocin administration in high-emotional male Sprague-Dawley rats. Regulatory Peptides, 88, 27–32.PubMedCrossRefGoogle Scholar
  62. Uvnäs-Moberg, K., Widström, A. M., Nissen, E., & Björwell, H. (1990). Personality traits in women 4 days postpartum and their correlation with plasma levels of oxytocin and prolactin. Journal of Psychosomatic Obstetrics and Gynaecology, 11, 261–273.CrossRefGoogle Scholar
  63. Wigger, A., & Neumann, I. D. (2002). Endogenous opioid regulation of stress-induced oxytocin release within the hypothalamic paraventricular nucleus is reversed in late pregnancy: A microdialysis study. Neuroscience, 112, 121–9.PubMedCrossRefGoogle Scholar
  64. Windle, R. J., Shanks, N., Lightman, S. L., & Ingram, C. D. (1997). Central oxytocin administration reduces stress-induced corticosterone release and anxiety behavior in rats. Endocrinology, 138, 2829–2834.PubMedCrossRefGoogle Scholar
  65. Winslow, J. T., Hearn, E. F., Fergusson, J., Young, L. J., Matzuk, M. M., & Insel, T. R. (2001). Infant vocalization, adult aggression and fear behavior of an oxytocin null mutant mouse. Hormones and Behavior, 39, 11–21.CrossRefGoogle Scholar

Copyright information

© International Society of Behavioral Medicine 2005

Authors and Affiliations

  • Kerstin Uvnäs-Moberg
    • 1
  • Ingemar Arn
    • 1
  • David Magnusson
    • 2
  1. 1.Department of Physiology and Pharmacology, Division of PharmacologyKarolinska Institutet StockholmSweden
  2. 2.Department of PsychologyStockholm UniversityStockholmSweden

Personalised recommendations