Advertisement

The influence of dietary cholesterol on cardiac and hepatic beta-adrenergic receptors in egyptian sand rats

  • Edward C. Suarez
  • Jorge V. Bartolome
  • Cynthia M. Kuhn
  • Saul M. Schanberg
  • Redford B. Williams
  • Eugene A. Zimmermann
Article
  • 31 Downloads

Abstract

We examined the effects of dietary cholesterol on cardiac and hepatic beta-adrenergic receptor functioning. Age-matched adult desert rodents (Psammomys obesus) were randomized to either a 5% cholesterol diet (CD, n = 20), or normal rabbit chow (RC, n = 18). After a 2-month exposure to the diets, animals were sacrificed and tissue from both heart and liver were retained for radioligand bindings studies. In heart tissue, cholesterol fed animals, relative to controls, showed an increased production of adenosine 3,5¢-cyclic monophosphate (cAMP) in response to isoproterenol. Cholesterol supplementation was not associated with an increase in heart beta-adrenergic receptor number. Animals fed the 5% cholesterol diet showed significant increases in the number of beta-adrenergic receptor sites in hepatic tissue (M = 13.2 vs. 10.4 pmol/mg protein, CD and RC, respectively). The increased number of receptor sites in the liver was accompanied by a significant increase in isoproterenol-stimulated cAMP production. Results are supportive of the hypothesis that dietary cholesterol contributes to an upregulation of beta-adrenergic receptor function in cardiac, as well as hepatic tissue. These findings may be relevant to the observations of excessive stress-induced cardiovascular reactivity in persons with high cholesterol levels.

Key words

beta-adrenergic receptors dietary cholesterol hepatic receptors Egyptian sand rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bjørnerheim, R., Golf, S., & Hansson, V. (1991). Specific non-b-adrenergic binding sites for I-iodocyanopindolol in myocardial membrane preparations: A comparative study between human, rat, and porcine hearts. Cardiovascular Research, 25, 764–773.PubMedCrossRefGoogle Scholar
  2. Charnock, J. S., McLennan, P. L., Abeywardena, M. Y., & Dryden, W. F. (1985). Diet and cardiac arrhythmia: Effects of lipids on age-related changes in myocardial function in rats. Annals of Nutrition and Metabolism, 29, 306–318.PubMedCrossRefGoogle Scholar
  3. Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Commission on Life Sciences. (1985). Guide for the care and use of laboratory animals. Bethesda, MD: National Institutes of Health.Google Scholar
  4. Frederikson, M., & Blumenthal, J. A. (1988). Lipids, catecholamines and cardiovascular responses to stress in patients recovering from myocardial infarction. Journal of Cardiopulmonary Rehabilitation, 12, 513–517.CrossRefGoogle Scholar
  5. Jorgensen, R. S., Nash, J. K., Lasser, N. L., Hymowitz, N., & Langer, A. W. (1988), Heart rate acceleration and its relationship to total serum cholesterol, triglycerides, and blood pressure reactivity in men with mild hypertension. Psychophysiology, 25, 39–44.PubMedCrossRefGoogle Scholar
  6. Kishi, Y., Nishiyama, K., & Numemo, F. (9185). Cyclic AMP accumulation in rabbit aorta smooth muscle cell altered in the presence of hyperlipidemic serum. Atherosclerosis, 56, 213–222.CrossRefGoogle Scholar
  7. Kramsch, D. M., & Hollander, W. (1968). Occlusive atherosclerosis disease of the coronary arteries in monkeys (Macaca irus) induced by diet. Experimental Molecular Pathology, 9, 1–22.CrossRefGoogle Scholar
  8. Lewis, S. J., Bristow, M. R., Lurie, K. G., Minobe, W. A., & Hoffman, B. B. (1982). Uncoupling of myocardial beta adrenergic receptors in cholesterol fed rabbits (Abstract). Circulation, 66(Suppl. II), 207.Google Scholar
  9. Loh, H. H., & Law, P. Y. (1980). The role of membrane lipids in receptor mechanisms. Annual Review of Pharmacology and Topology, 20, 201–34.CrossRefGoogle Scholar
  10. Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurements with folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMedGoogle Scholar
  11. Lurie, K. G., Chin, J. H., & Hoffman, B. B. (1985). Decreased membrane fluidity and b-adrenergic responsiveness in atherosclerotic quail. American Journal of Physiology, 249(2 Pt. 2), H380-H385.PubMedGoogle Scholar
  12. McLennan, P. L., Abeywardena, M. Y., & Charnock, J. S. (1985). Influence of dietary lipids on arrhythmias and infarction after coronary artery ligation in rats. Canadian Journal of Physiology and Pharmacology, 63, 1411–1417.PubMedGoogle Scholar
  13. McLennan, P. L., Abeywardena, M. Y., Charnock, J. S., & McMurchie, E. J. (1987). Dietary lipid modulation of myocardial beta-adrenergic mechanisms, Ca2+ -dependent automaticity, and arrhythmogenesis in the marmoset. Journal of Cardiovascular Pharmacology, 10, 293–300.PubMedCrossRefGoogle Scholar
  14. McMurchie, E. J., & Patten, G. S. (1988). Dietary cholesterol influences cardiac b-adrenergic receptor adenylate cyclase activity in marmoset monkey by changes in membrane cholesterol status. Biochimica et Biophysica Acta, 942, 324–332.PubMedCrossRefGoogle Scholar
  15. McMurchie, E. J., Patten, G. S., Charnock, J. S., & McLennan, P. L. (1987). The interaction of dietary fatty acid and cholesterol on catecholamine-stimulated adenylate cyclase activity in the rat heart. Biochimica et Biophysica Acta, 898, 137–153.PubMedCrossRefGoogle Scholar
  16. McMurchie, E. J., Patten, G. S., McLennan, P. L., Charnock, J. S., & Nesterl, P. J. (1988). The influence of dietary lipid supplementation on cardiac b-adrenergic receptor adenylate cyclase activity in the marmoset monkey, Biochimica et Biophysica Acta, 937, 347–358.PubMedCrossRefGoogle Scholar
  17. Melville, K. I., & Shister, H. E. (1959). Cardiac responses to epinephrine and norepinephrine during prolonged cholesterol and high fat feeding in rabbits. American Journal of Cardiology, 4, 391–400.CrossRefGoogle Scholar
  18. Mikat, E. M., Weiss, J. M., Schanberg, S. M., Bartolome, J. V. Palmos, L. E., Hackel, D. B., & Williams, R. B. (1990). Development of atherosclerotic-like lesions in the sand rat (Psammomys obesus), Coronary Artery Disease, 1, 469–476.CrossRefGoogle Scholar
  19. Mokler, C. M., Mohamed, T. A., & Heric, E. (1985). Effects of hypercholesterolemia on beta adrenoceptors in the rabbit heart. Drug-Nutrient Interactions, 3, 165–172.PubMedGoogle Scholar
  20. The Pooling Project Research Group. (1978). Relationship of blood pressure, serum cholesterol, smoking habit, relative weight and ECG abnormalities to incidence of major coronary events: Final report of the pooling project, Chronic Disease, 31, 201–306.CrossRefGoogle Scholar
  21. Rosendorff, C., Hoffman, J. J. E., Verrier, E. D., Rouleau, J., & Boerboom, L. E. (1981). Cholesterol potentiates the coronary artery response to norepinephrine in anesthetized and conscious dogs. Circulatory Respiration, 48, 320–329.Google Scholar
  22. Scarpace, P. J., O’Connor, S. W., & Abrass, I. B. (1985). Cholesterol modulation of b-adrenergic receptor characteristics, Biochimica et Biophysica Acta, 845, 520–525.PubMedGoogle Scholar
  23. Stiles, G. L., Caron, M. G., & Lefkowitz, R. J. (1984). b-adrenergic receptors: Biochemical mechanisms of physiological regulation. Physiology Review, 64, 661–743.Google Scholar
  24. Suarez, E. C., Williams, R. B., Kuhn, C. M., Zimmermann, E. H., & Schanberg, S. M. (1991). Biobehavioral basis of coronary-prone behavior in middle-aged men. Part II: Serum cholesterol, the type A behavior pattern, and hostility as interactive modulators of physiological reactivity. Psychosomatic Medicine, 53, 528–537.PubMedGoogle Scholar
  25. Tsutsumi, S., Tsuji, K., Ogawa, K., Ito, T., & Satake, T. (1988). Effect of dietary salt and cholesterol loading on muscular adrenergic receptors. Blood Vessels, 25, 209–216.PubMedCrossRefGoogle Scholar

Copyright information

© International Society of Behavioral Medicine 1997

Authors and Affiliations

  • Edward C. Suarez
    • 1
  • Jorge V. Bartolome
    • 2
  • Cynthia M. Kuhn
    • 2
  • Saul M. Schanberg
    • 2
  • Redford B. Williams
    • 1
  • Eugene A. Zimmermann
    • 2
  1. 1.Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA
  2. 2.Department of PharmacologyDuke University Medical CenterDurhamUSA

Personalised recommendations