Skip to main content
Log in

A hierarchical model for the analysis of spatial rainfall extremes

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

In this article, we propose a spatial model for analyzing extreme rainfall values over the Triveneto region (Italy). We assess the existence of a long-term trend in the extremes. To integrate data coming from the different stations, we propose a hierarchical model. At the first level, for each monitoring station we model data by making use of a generalized extreme value distribution; at the second level, we combine results from the first stage by exploiting recent advances in modeling nonstationary spatial random fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Besag, J., Green, P., Higdon, D., and Mengersen, K. (1995), “Bayesian Computation and Stochastic Systems,” Statistical Science, 10, 3–41.

    Article  MATH  MathSciNet  Google Scholar 

  • Bloomfield, P. (1992), “Trends in Global Temperatures,” Climatic Change, 21, 1–16.

    Article  Google Scholar 

  • Brooks, S. P., and Gelman, A. (1998), “General Methods for Monitoring Convergence of Iterative Simulations,” Journal of Computational and Graphical Statistics, 7, 434–455.

    Article  MathSciNet  Google Scholar 

  • Casson, E., and Coles, S. G. (1999), “Spatial Regression Models for Extremes,” Extremes, 1, 449–468.

    Article  MATH  Google Scholar 

  • Chandler, R. E. (2005), “On the Use of Generalized Linear Models for Interpreting Climate Variability,” Environmetrics, 16, 699–715.

    Article  MathSciNet  Google Scholar 

  • Coles, S. (2001), An Introduction to Statistical Modeling of Extreme Values, London: Springer.

    MATH  Google Scholar 

  • Cooley, D., Nychka, D., and Naveau, P. (2007), “Bayesian Spatial Modeling of Extreme Precipitation Return Levels,” Journal of the American Statistical Association, 102, 824–840.

    Article  MATH  MathSciNet  Google Scholar 

  • Eberly, L. E., and Carlin, B. P. (2000), “Identifiability and Convergence Issues for Markov Chain Monte Carlo Fitting of Spatial Models,” Statistics in Medicine, 19, 2279–2294.

    Article  Google Scholar 

  • Ekström, M., Fowler, H. J., Kilsby, C. G., and Jones, P. D. (2005), “New Estimates of Future Changes in Extreme Rainfall Across the UK Using Regional Climate Model Integrations. 2. Future Estimates and use in Impact Studies,” Journal of Hydrology, 300, 234–251.

    Article  Google Scholar 

  • Gelfand, A. E., and Sahu, S. K. (1999), “Identifiability, Improper Priors, and Gibbs Sampling for Generalized Linear Models,” Journal of the American Statistical Association, 94, 247–253.

    Article  MATH  MathSciNet  Google Scholar 

  • Gelman, A., Meng, X. L., and Stern, H. (1996), “Posterior Predictive Assessment of Model Fitness via Realized Discrepancies,” Statistica Sinica, 6, 733–807.

    MATH  MathSciNet  Google Scholar 

  • Gelman, A., and Rubin, D. B. (1992), “Inference from Iterative Simulation using Multiple Sequences,” Statistical Science, 7, 457–511.

    Article  Google Scholar 

  • Hall, P., and Tajvidi, N. (2000), “Nonparametric Analysis of Temporal Trend When Fitting Parametric Models to Extreme-Value Data,” Statistical Science, 18, 153–167.

    MathSciNet  Google Scholar 

  • Higdon, D. (1998), “A Process-Convolution Approach to Modelling Temperatures in the North Atlantic Ocean,” Environmental and Ecological Statistics, 5, 173–190.

    Article  Google Scholar 

  • — (2002), “Space and Space-Time Modeling Using Process Convolutions,” in Quantitative Methods for Current Environmental Issues, eds. C. W. Anderson, V. Barnett, P. C. Chatwin, and A. H. El-Shaarawi, London: Springer, pp. 37–54.

    Google Scholar 

  • Higdon, D., Swall, J., and Kern, J. (1999), “Non-stationary Spatial Modeling,” in Bayesian Statistics 6, eds. J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, Oxford: Clarendon, pp. 761–768.

    Google Scholar 

  • IPCC (2007), Climate Change 2007: Impacts, Adaptation and Vulnerability, Working Group II Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report.

  • Karl, T. R., Knight, R., and Plummer, N. (1995), “Trends in High Frequency Climate Variability in the Twentieth Century,” Nature, 377, 217–220.

    Article  Google Scholar 

  • Karl, T. R., and Knight, R. W. (1998), “Secular Trends of Precipitation Amount, Frequency, and Intensity in the United States,” Bulletin of the American Meteorological Society, 79, 231–241.

    Article  Google Scholar 

  • Katz, R. W., Parlange, M. B., and Naveau, P. (2002), “Statistics of Extremes in Hydrology,” Advances in Water Resources, 25, 1287–1304.

    Article  Google Scholar 

  • Klein Tank, A. M. G., and Können, G. P. (2003), “Trends in Indices of Daily Temperature and Precipitation Extremes in Europe, 1946–1999,” Journal of Climate, 16, 3665–3680.

    Article  Google Scholar 

  • Piegorsch, W. W., Smith, E. P., Edwards, D., and Smith, R. L. (1998), “Statistical Advances in Environmental Science,” Statistical Science, 13, 186–208.

    Article  MATH  Google Scholar 

  • Robert, C. P., and Casella, G. (1999), Monte Carlo Statistical Methods, New York: Springer.

    MATH  Google Scholar 

  • Sheather, S. J., and Jones, M. C. (1991), “A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation,” Journal of the Royal Statistical Society, Series B, 53, 683–690.

    MATH  MathSciNet  Google Scholar 

  • Smith, R. L. (1994), “Spatial Modelling of Rainfall Data,” in Statistics for the Environment 2: Water Related Issues, eds. V. Barnett and F. Turkman, Chichester: Wiley, pp. 19–42.

    Google Scholar 

  • Smith, R. L. (1999), “Trends in Rainfall Extremes,” Preprint.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Gaetan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaetan, C., Grigoletto, M. A hierarchical model for the analysis of spatial rainfall extremes. JABES 12, 434–449 (2007). https://doi.org/10.1198/108571107X250193

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1198/108571107X250193

Key Words

Navigation