Skip to main content
Log in

Spatial designs and properties of spatial correlation: Effects on covariance estimation

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

In a spatial regression context, scientists are often interested in a physical interpretation of components of the parametric covariance function. For example, spatial covariance parameter estimates in ecological settings have been interpreted to describe spatial heterogeneity or “patchiness” in a landscape that cannot be explained by measured covariates. In this article, we investigate the influence of the strength of spatial dependence on maximum likelihood (ML) and restricted maximum likelihood (REML) estimates of covariance parameters in an exponential-with-nugget model, and we also examine these influences under different sampling designs—specifically, lattice designs and more realistic random and cluster designs—at differing intensities of sampling (n=144 and 361). We find that neither ML nor REML estimates perform well when the range parameter and/or the nugget-to-sill ratio is large—ML tends to underestimate the autocorrelation function and REML produces highly variable estimates of the autocorrelation function. The best estimates of both the covariance parameters and the autocorrelation function come under the cluster sampling design and large sample sizes. As a motivating example, we consider a spatial model for stream sulfate concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustine, D. J., and Frank, Douglas A. (2001), “Effects of Migratory Grazers on Spatial Heterogeneity of Soil Nitrogen Properties in a grassland Ecosystem,” Ecology, 82, 3149–3162.

    Article  Google Scholar 

  • Baker, L. A., Herlihy, A. T., Kaufmann, P. R., and Eilers, J. M. (1991), “Acidic Lakes and Streams in the United States: The Role of Acidic Deposition,” Science, 252, 1151–1154.

    Google Scholar 

  • Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004), Hierarchical Modeling and Analysis for Spatial Data, Boca Raton, FL: Chapman and Hall/CRC Press.

    MATH  Google Scholar 

  • Bellehumeur, C., and Legendre, P. (1998), “Multiscale Sources of Variatio in Ecological Variables: Modeling Spatial Dispersion, Elaborating Sampling Designs,” Landscape Ecology, 13, 15–25.

    Article  Google Scholar 

  • Chen, H.-S., Simpson, D. G., and Ying, Z. (2000), “Infill Asymptotics for a Stochastic Process Model With Measurement Error,” Statistica Sinica, 10, 141–156.

    MATH  MathSciNet  Google Scholar 

  • Cressie, N., and Majure, J. J. (1997), “Spatio-Temporal Statistical Modeling of Livestock Waste in Streams,” Journal of Agricultural, Biological, and Environmental Statistics, 2, 24–47.

    Article  MathSciNet  Google Scholar 

  • Cressie, N. A. C. (1993), Statistics for Spatial Data, New York: Wiley.

    Google Scholar 

  • Cressie, N. A. C., and Lahiri, S. N. (1996), “Asymptotics for REML Estimation of Spatial Covariance Parameters,” Journal of Statistical Planning and Inference, 50, 327–341.

    Article  MATH  MathSciNet  Google Scholar 

  • Dalthorp, D., Nyrop, J., and Villani, M. (2000), “Foundations of Spatial Ecology: The Reification of Patches Through Quantitative Description of Patterns and Pattern Repetition,” Entomologia Experimentalis et Applicata, 96, 119–127.

    Article  Google Scholar 

  • Franklin, R. B., Blum, L. K., McComb, A. C., and Mills, A. L. (2002), “A Geostatistical Analysis of Small-Scale Spatial Variability in Bacterial Abundance and Community Structure in Salt Marsh Creek Bank Sediments,” FEMS Microbiology Ecology, 42, 71–80.

    Article  Google Scholar 

  • Ganio, L. M., Torgensen, C. E., and Gresswell, R. E. (2005), “A Geostatistical Approach for Describing Spatial Pattern in Stream Networks,” Frontiers in Ecology and Environment, 3, 138–144.

    Article  Google Scholar 

  • Gardner, B., Sullivan, P. J., and Lembo, Jr., A. J. (2003), “Predicting Stream Temperatures: Geostatistical Model Comparison using Alternative Distance Metrics,” Canadian Journal of Fisheries and Aquatic Science, 60, 344–351.

    Article  Google Scholar 

  • Herlihy, A. T., Kaufmann, P. R., Church, M. R., Wigington, Jr., P. J., Webb, J. R., and Sale, M. J. (1993), “The Effects of Acidic Deposition on Streams in the Appalachain Mountain and Piedmont Region of the mid-Atlantic United States,” Water Resources Research, 29, 2687–2703.

    Article  Google Scholar 

  • Herlihy, A. T., Kaufmann, P. R., and Mitch, M. E. (1990), “Regional Estimates of Acid Mine Drainage Impact on Streams in the mid-Atlantic and Southeastern United States,” Water, Air, and Soil Pollution, 50, 91–107.

    Article  Google Scholar 

  • — (1991), “Stream Chemistry in the Eastern United States 2. Current Sources of Acidity in Acidic and Low Acid-Neutralizing Capacity Streams,” Water Resources Research, 27, 629–642.

    Article  Google Scholar 

  • Hoeting, J. A., Davis, R. A., Merton, A. A., and Thompson, S. E. (2006), “Model Selection for Geostatistical Models,” Ecological Applications, 16, 87–98.

    Article  Google Scholar 

  • Kaufmann, P. R., Herlihy, A. T., and Baker, L. A. (1992), “Sources of Acidity in Lakes and Streams of the United States,” Environmental Pollution, 77, 115–122.

    Article  Google Scholar 

  • Kaufmann, P. R., Herlihy, A. T., Mitch, M. E., Messer, J. J., and Overton, W. S. (1991), “Stream Chemistry in the Eastern United States 1. Synoptic Survey Design, Acid-Base Status, and Regional Patterns,” Water Resources Research, 27, 611–627.

    Article  Google Scholar 

  • Kennard, D. K., and Outcalt, K. (2006), “Modeling Spatial Patterns of Fuels and Fire Behavior in a Longleaf Pine Forest in the Southeastern USA,” Fire Ecology, 2, 31–52.

    Article  Google Scholar 

  • Lark, R. M. (2000), “Estimating Variograms of Soil Properties by the Method-of-Moments and Maximum Likelihood,” European Journal of Soil Science, 51, 717–728.

    Article  Google Scholar 

  • Madsen, L. J. (2000), “Comparing Two Parameterizations of the Exponential Variogram in REML Parameter Estimation and Spatial Prediction,” unpublished master’s thesis, Cornell University, Ithaca, New York.

    Google Scholar 

  • Mardia, K., and Marshall, R. (1984), “Maximum Likelihood Estimation of Models for Residual Covariance in Spatial Regression,” Biometrika, 71, 135–146.

    Article  MATH  MathSciNet  Google Scholar 

  • Minasny, B., and McBratney, A. B. (2005), “The Matérn Function as a General Model for Soil Variograms,” Geoderma, 128, 192–207.

    Article  Google Scholar 

  • Muller, W. G., and Zimmerman, D. L. (1999), “Optimal Designs for Variogram Estimation,” Environmetrics, 10, 23–37.

    Article  Google Scholar 

  • Ollinger, S. V., Aber, J. D., Lovett, G. M., Millham, S. E., Lathrop, R. G., and Ellis, J. M. (1993), “A Spatial Model of Atmospheric Deposition for the Northeastern U.S.,” Ecological Applications, 3, 459–472.

    Article  Google Scholar 

  • Peterson, E. E., Merton, A. A., Theobald, D. M., and Urquhart, N. (2006), “Patterns of Spatial Autocorrelation in Stream Water Chemistry,” Environmental Monitoring and Assessment, 121, 569–594.

    Article  Google Scholar 

  • Pettitt, A. N., and McBratney, A. B. (1993), “Sampling Designs for Estimating Spatial Variance Components,” Applied Statistics, 42, 185–209.

    Article  MATH  Google Scholar 

  • Rossi, R. E., Mulla, D. J., Journel, A. G., and Franz, E. H. (1992), “Geostatistical Tools for Modeling and Interpreting Ecological Spatial Dependence,” Ecological Monographs, 62, 277–314.

    Article  Google Scholar 

  • Rufino, M. M., Maynou, F., Abello, P., and Yule, A. B. (2004), “Small-Scale Non-linear Geostatistical Analysis of Liocarcinus depurator (crustacea: brachyura) A bundance and Size Structure in a Western Mediterranean Population,” Marine Ecology Progress Series, 276, 223–235.

    Article  Google Scholar 

  • Saetre, P., and Baath, E. (2000), “Spatial Variation and Patterns of Soil Microbial Community Structure in a Mixed Spruce-Birch Stand,” Soil Biology and Biochemistry, 32, 909–917.

    Article  Google Scholar 

  • Schabenberger, O., and Gotway, C. A. (2005), Statistical Methods for Spatial Data Analysis, Boca Raton, FL: Chapman and Hall/CRC Press.

    MATH  Google Scholar 

  • Schwarz, P. A., Fahey, T. J., and McCulloch, C. E. (2003), “Factors Controlling Spatial Variation of Tree Species Abundance in a Forested Landscape,” Ecology, 84, 1862–1878.

    Article  Google Scholar 

  • Stein, M. L. (1988), “Asymptotically Efficient Prediction of a Random Field with a Misspecified Covariance Function,” The Annals of Statistics, 16, 55–63.

    Article  MATH  MathSciNet  Google Scholar 

  • Swallow, W. H., and Monahan, J. F. (1984), “Monte Carlo Comparison of ANOVA, MIVQUE, REML, and ML Estimators of Variance Components,” Technometrics, 26, 47–57.

    Article  MATH  Google Scholar 

  • Thompson, S. E. (2001), “Bayesian Model Averaging and Spatial Prediction,” unpublished PhD thesis, Colorado State University, Fort Collins, CO.

    Google Scholar 

  • Ver Hoef, J. (2004), Graybill Conference, June 16–18. In Short Course on Spatial Statistics, Fort Collins, CO.

  • Webster, R., and Oliver, M. A. (2001), Geostatistics for Environmental Scientists, West Sussex, England: Wiley.

    MATH  Google Scholar 

  • Xia, G., Miranda, M. L., and Gelfand, A. E. (2006), “Approximately Optimal Spatial Design Approaches for Environmental Health Data,” Environmentrics, 17, 363–385.

    Article  MathSciNet  Google Scholar 

  • Zhang, H. (2004), “Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics,” Journal of the American Statistical Association, 99, 250–261.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, H., and Zimmerman, D. L. (2005), “Towards Reconciling two Asymptotic Frameworks in Spatial Statistics,” Biometrika, 92, 921–936.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu, Z., and Stein, M. L. (2005), “Spatial Sampling Design for Parameter Estimation of the Covariance Function,” Journal of Statistical Planning and Inference, 134, 583–603.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu, Z., and Zhang, H. (2006), “Spatial Sampling Design Under the Infill Asymptotic Framework,” Environmetrics, 17, 323–337.

    Article  MathSciNet  Google Scholar 

  • Zimmerman, D. L. (2006), “Optimal Network Design for Spatial Prediction, Covariance Parameter Estimation and Empirical Prediction,” Environmetrics, 17, 635–652.

    Article  MathSciNet  Google Scholar 

  • Zimmerman, D. L., and Zimmerman, M. B. (1991), “A Comparison of Spatial Semivariogram Estimators and Corresponding Ordinary Kriging Predictors,” Technometrics, 33, 77–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn M. Irvine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irvine, K.M., Gitelman, A.I. & Hoeting, J.A. Spatial designs and properties of spatial correlation: Effects on covariance estimation. JABES 12, 450–469 (2007). https://doi.org/10.1198/108571107X249799

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1198/108571107X249799

Key Words

Navigation