Skip to main content
Log in

Local linear mixed effect models—Model specification and interpretation in a biological context

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

Clustered data, either as an explicit part of the study design or due to the natural distribution of habitats, populations, and so on, are frequently encountered by biologists. Mixed effect models provide a framework that can handle clustered data by estimating cluster-specific random effects and introducing correlated residual structures. General parametric models have been shown not to suit all biological problems, resulting in an increased popularity for local regression procedures, such as LOESS and splines. To evaluate similar biological problems for clustered data with cluster-specific random effects and potential dependencies between within-cluster residuals, we suggest a local linear mixed model (LLMM). The LLMM approach is a local version of a linear mixed-effect model (LME), and the LLMM approach produces: (1) local shared predictions, (2) local cluster-specific predictions, and (3) estimates of cluster-specific random effects conditioned on the covariates. Thus, in addition to the local estimates of the expected response, we obtain information about how the cluster-specific random variability depends on the values of the covariate. Ovary data are used to illustrate the flexibility and potential of this procedure in biological contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, M. P. (1999), “A Silent Clash of Paradigms: Some Inconsistencies in Community Ecology,” Oikos, 86, 170–177.

    Article  Google Scholar 

  • Bio, A. M. F., Becker, P. D., Bie, E. D., Huybrechts, W., and Wassen, M. (2002), “Prediction of Plant Species Distribution in Lowland River Valleys in Belgium: Modelling Species Response to Site Conditions,” Biodiversity and Conservation, 11, 2189–2216.

    Article  Google Scholar 

  • Bjune, A. E., Birks, H. J. B., and Seppä, H. (2004), “Holocene Vegetation and Climate History on a Continental-Oceanic Transect in Northern Fennoscandia Based on Pollen and Plant Macrofossils,” Boreas, 33, 212–223.

    Article  Google Scholar 

  • Chen, K., and Jin, Z. (2005), “Local Polynomial Regression Analysis of Clustered Data,” Biometrika, 92, 59–74.

    Article  MATH  MathSciNet  Google Scholar 

  • Diggle, P. J. (1990), Time Series: A Biostatistical Introduction, Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Diggle, P. J., Liang, K.-Y., and Zeger, S. L. (1994), Analysis of Longitudinal Data, Oxford: Clarendon Press.

    Google Scholar 

  • Evans, M., and Swartz, T. (2000), Approximating Integrals via Monte Carlo and Deterministic Methods, Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Fortin, M., and Dale, M. R. T. (2005), Spatial Analysis, Cambridge: Cambridge University Press.

    Google Scholar 

  • Hastie, T., and Tibshirani, R. (1990), Generalized Additive Models, London: Chapman and Hall.

    MATH  Google Scholar 

  • Hastie, T., Tibshirani, R., and Friedman, J. (2001), The Elements of Statistical Learning, New York: Springer.

    MATH  Google Scholar 

  • Heegaard, E. (2002), “The Outer Border and Central Border for Species-Environmental Relationships Estimated by Non-parametric Generalised Additive Models,” Ecological Modelling, 157, 131–139.

    Article  Google Scholar 

  • Heegaard, E., Birks, H. H., Gibson, C. E., Smith, S. J., and Wolfe-Murphy, S. (2001), “Species-Environmental Relationships of Aquatic Macrophytes in Northern Ireland,” Aquatic Botany, 70, 175–223.

    Article  Google Scholar 

  • Hoyle, M., and Gilbert, F. (2004), “Species Richness of Moss Landscapes Unaffected by Short-Term Fragmentation,” Oikos, 105, 359–367.

    Article  Google Scholar 

  • Lawton, J. H. (1999), “Are There General Laws in Ecology?” Oikos, 84, 177–192.

    Article  Google Scholar 

  • Legendre, P. (1993), “Spatial Autocorrelation: Trouble or New Paradigm?” Ecology, 74, 1659–1673.

    Article  Google Scholar 

  • Legendre, P., and Legendre, L. (1998), Numerical Ecology, Amsterdam: Elsevier.

    MATH  Google Scholar 

  • Lin, X., and Carroll, R. J. (2000), “Nonparametric Function Estimation for Clustered Data When the Predictor is Measured Without/With Error,” Journal of the American Statistical Association, 95, 520–534.

    Article  MATH  MathSciNet  Google Scholar 

  • Lin, X., and Zhang, D. (1999), “Inference in Generalized Additive Mixed Models using Smooth Splines,” Journal of Royal Statistical Society, Series B, 61, 382–400.

    MathSciNet  Google Scholar 

  • Loader, C. (1999), Local Regression and Likelihood, New York: Springer.

    MATH  Google Scholar 

  • McCulloch, C. E., and Searle, S. R. (2001), Generalized, Linear, and Mixed Models, New York: Wiley.

    MATH  Google Scholar 

  • Oksanen, J., and Minchin, P. R. (2002), “Continuum Theory Revisited: What Shape are Species Responses Along Ecological Gradients?” Ecological Modelling, 157, 119–129.

    Article  Google Scholar 

  • Pawitan, Y. (2000), In All Likelihood: Statistical Modelling and Inference using Likelihood, Oxford: Oxford Scientific Publications.

    Google Scholar 

  • Pierson, R. A., and Ginther, O. J. (1987), “Follicular Population Dynamics During the Estrus Cycle of the Mare,” Animal Reproduction Science, 14, 219–231.

    Article  Google Scholar 

  • Pinheiro, J. C., and Bates, D. M. (2000), Mixed-Effects Models in S and S-plus, New York: Springer.

    MATH  Google Scholar 

  • Schall, R. (1991), “Estimation in Generalized Linear Models with Random Effects,” Biometrica, 78, 719–727.

    Article  MATH  Google Scholar 

  • Schwarz, G. (1978), “Estimating the Dimension of a Model,” Annals of Statistics, 6, 461–464.

    Article  MATH  MathSciNet  Google Scholar 

  • Vange, V., Heuch, I., and Vandvik, V. (2004), “Do Seed Mass and Family Affect Germination and Juvenile Performance in Knautia arvensis? A Study using Failure-Time Methods,” Acta Oecologia, 25, 169–178.

    Article  Google Scholar 

  • Venables, W. N., and Ripley, B. D. (2004), Modern Applied Statistics with S (4th ed.), New York: Springer.

    Google Scholar 

  • Wang, N. (2003), “Marginal Nonparametric Kernel Regression Accounting for Within-Subject Correlation,” Biometrika, 90, 43–52.

    Article  MATH  MathSciNet  Google Scholar 

  • Wood, S. (2004a), Low Rank Scale Invariant Tensor Product Smooths for Generalized Additive Mixed Models, Texhnical Report 04-13 Deparment of Statistics, University of Glasgow.

  • — (2004b), “Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized AddititveModels,” Journal of the American Statistical Association, 99, 637–686.

    Article  Google Scholar 

  • — (2006), Generalized Additive Models, London: Chapman & Hall.

    MATH  Google Scholar 

  • Zhang, D. W., and Davidian, M. (2004), “Likelihood and Conditional Likelihood Inference for Generalised Additive Mixed Models for Clustered Data,” Journal of Multivariate Analysis, 91, 90–106.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einar Heegaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heegaard, E., Nilsen, T. & Nilsen, T. Local linear mixed effect models—Model specification and interpretation in a biological context. JABES 12, 414–430 (2007). https://doi.org/10.1198/108571107X228134

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1198/108571107X228134

Key Words

Navigation