Skip to main content
Log in

Abstract

Quantitative real-time PCR (polymerase chain reaction) assays are increasingly used to measure quantities of nucleic acids in samples. They may be used to provide a high-throughput alternative to more traditional biological assays. In this case, a calibration process may be required to convert the PCR measurements onto a more relevant scale. This is most commonly undertaken using simple linear regression. However, such calibration models are usually unrealistic since they ignore the various sources of variation associated with the PCR and conventional assays. Taking account of these various sources is necessary if the errors associated with predictions based on the calibration model are to be well estimated. In this article, we demonstrate a more complete approach to calibration of quantitative PCR. As an example, we develop a Bayesian calibration model for measuring the quantity of the fungus common bunt (Tilletia caries) on wheat seed, based on our understanding of the properties of the assays. As well as illustrating the steps in developing such a model, we show how the fit of the model might be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti, A. (2002), Categorical Data Analysis (2nd ed.), New York: Wiley.

    MATH  Google Scholar 

  • Aitchison, J., and Dunsmore, I. R. (1975), Statistical Prediction Analysis, Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Berdal, K. G., and Holst-Jensen, A. (2001), “Roundup Ready® Soybean Event-Specific Real-Time Quantitative PCR Assay and Estimation of the Practical Detection and Quantification Limits in GMO Analyses,” European Food Research and Technology, 213, 432–438.

    Article  Google Scholar 

  • Bowman, J. C., Abruzzo, G. K., Anderson, J. W., Flattery, A. M., Gill, C. J., Pikounis, V. B., Schmatz, D. M., Liberator, P. A., and Douglas, C. M. (2001), “Quantitative PCR Assay to Measure Aspergillus fumigatus Burden in a Murine Model of Disseminated Aspergillosis: Demonstration of Efficacy of Caspofungin Acetate,” Antimicrobial Agents and Chemotherapy, 45, 3474–3481.

    Article  Google Scholar 

  • Brinkman, N. E., Haugland, R. A., Wymer, L. J., Byappanahalli, M., Whitman, R. L., and Vesper, S. J. (2003), “Evaluation of a Rapid, Quantitative Real-Time PCR Method for Enumeration of Pathogenic Candida Cells in Water,” Applied and Environmental Microbiology, 69, 1775–1782.

    Article  Google Scholar 

  • Brooks, S. P., and Gelman, A. (1998), “General Methods for Monitoring Convergence of Iterative Simulations,” Journal of Computational and Graphical Statistics, 7, 434–457.

    Article  MathSciNet  Google Scholar 

  • Cockerell, V., Paveley, N. D., Clark, W. S., Thomas, J. E., Anthony, S., McEwan, M., Bates, J., Roberts, A. M. I., Law, J. R., Kenyon, D. M., and Mulholland, V. (2004), “Cereal Seed Health and Seed Treatment Strategies: Exploiting New Seed Testing Technology to Optimise Seed Health Decisions for Wheat,” Project Report 340, Home-Grown Cereals Authority, London.

    Google Scholar 

  • Edwards, K. J., Logan, J. M. J., and Saunders, N. A. (2004), Real-time PCR: an Essential Guide, Wymondham: Horizon Bioscience.

    Google Scholar 

  • Gallina, L., Dal Pozzo, F., Mc Innes, C. J., Cardeti, G., Guercio, A., Battilani, M., Ciulli, S., and Scagliarini, A. (2006), “A Real Time PCR Assay for the Detections and Quantification of Orf Virus,” Journal of Virological Methods, 134, 140–145.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004), Bayesian Data Analysis (2nd ed.), Boca Raton: Chapman and Hall.

    MATH  Google Scholar 

  • Gelman, A., and Rubin, D. B. (1992), “Inference From Iterative Simulation Using Multiple Sequences,” Statistical Science, 7, 457–511.

    Article  Google Scholar 

  • Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996), Markov Chain Monte Carlo in Practice, London: Chapman and Hall.

    MATH  Google Scholar 

  • Kunert, R., Gach, J. S., Vorauer-Uhl, K., Engel, E., and Katinger, H. (2006), “Validated Method for Quantification of Genetically Modified Organisms in Samples of Maize Flour,” Journal of Agricultural and Food Chemistry, 54, 678–681.

    Article  Google Scholar 

  • Lievens, B., Brouwer, M., Vanachter, A. C. R. C., Cammue, B. P. A., and Thomma, B. P. H. J. (2006), “Real-Time PCR for Detection and Quantification of Fungal and Oomycete Tomato Pathogens in Plant and Soil Samples,” Plant Science, 171, 155–165.

    Article  Google Scholar 

  • McNeil, M., Roberts, A. M. I., Cockerell, V., and Mulholland, V. (2004), “Real-Time PCR Assay for Quantification of Tilletia caries Contamination of UK Wheat Seed,” Plant Pathology, 53, 741–750.

    Article  Google Scholar 

  • Mulholland, V., and McEwan, M. (2000), “PCR-Based Diagnostics of Microdochium nivale and Tilletia tritici Infecting Winter Wheat Seeds,” EPPO Bulletin, 30, 543–547.

    Article  Google Scholar 

  • Mullis, K. B., Ferré, F., and Gibbs, R. A. (eds.) (1994), The Polymerase Chain Reaction, Boston: Birkhäuser.

    Google Scholar 

  • Raynor, M., Stephenson, S., Walsh, D. C. A., Pittman, K. B., and Dobrovic, A. (2002), “Optimisation of the RT-PCR Detection of Immunomagnetically Enriched Carcinoma Cells,” BMC Cancer, 2, 14.

    Article  Google Scholar 

  • Schena, L., Nigro, F., Ippolito, A., and Gallitella, D. (2004), “Real-Time Quantitative PCR: A New Technology to Detect and Study Phytopathogenic and Antagonistic Fungi,” European Journal of Plant Pathology, 110, 893–908.

    Article  Google Scholar 

  • Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. (2004), Win BUGS User Manual (Version 1.4.1.), Cambridge: Medical Research Council Biostatistics Unit.

    Google Scholar 

  • Theobald, C. M., and Talbot, M. (2002), “The Bayesian Choice of Crop Variety and Fertilizer Dose,” Applied Statistics, 51, 23–36.

    MATH  MathSciNet  Google Scholar 

  • Varma, M., Hester, J. D., Schaefer, F. W., Ware, M.W., and Lindquist, H. D. A. (2003), “Detection of Cyclospora Cayetanensis using a Quantitative Real-Time PCR Assay,” Journal of Microbiological Methods, 53, 27–36.

    Article  Google Scholar 

  • Winton, L. M., Manter, D. K., Stone, J. K., and Hansen, E. A. (2003), “Comparison of Biochemical, Molecular, and Visual Methods to Quantify Phaeocryptopus gaeumannii in Douglas-Fir Foliage,” Phytopathology, 93, 121–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. I. Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, A.M.I., Theobald, C.M. & McNeil, M. Calibration of quantitative PCR assays. JABES 12, 364–378 (2007). https://doi.org/10.1198/108571107X227379

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1198/108571107X227379

Key Words

Navigation