Skip to main content
Log in

Modeling exposure-biomarker relationships: Applications of linear and nonlinear toxicokinetics

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

Establishing and characterizing exposure-biomarker relationships represent important steps to understanding how exposure to a harmful environmental toxin ultimately leads to disease in human populations. Here, we present a statistical model to characterize a nonlinear exposure-biomarker relationship and use occupational benzene exposures to illustrate the application. We also attempt to estimate the range of linear metabolism of benzene by fitting our model to data from a recent study of biomarkers (benzene-oxide-albumin adducts) measured in a population of Chinese workers exposed to benzene. Estimating the parameters of interest is difficult due to within and between subject variability in exposure and biomarker levels and because of exposure measurement error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bates, D. M., and Watts, D. G. (1988), Nonlinear Regression Analysis and its Applications, New York: Wiley.

    Book  MATH  Google Scholar 

  • Box, G. E. P., and Cox, D. R. (1964), “An Analysis of Transformations,” Journal of the Royal Statistical Society, Series B, 26, 211–246.

    MATH  MathSciNet  Google Scholar 

  • Carroll, R. J., and Ruppert, D. (1984), “Power Transformations When Fitting Theoretical Models to Data,” Journal of the American Statistical Association, 79, 321–328.

    Article  MathSciNet  Google Scholar 

  • — (1988), Transformations and Weighting in Regression, New York: Chapman & Hall.

    Google Scholar 

  • Carroll, R. J., Ruppert, D., and Stefanski, L. A. (1995), Measurement Error in Nonlinear Models, Boca Raton, FL: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Carroll, R. J., Spiegelman, C., Lan, K. K., Bailey, K. T., and Abbott, R. D. (1984), “On Errors-in-Variables for Binary Regression Models,” Biometrika, 71, 186–96.

    Article  MathSciNet  Google Scholar 

  • Clewell, H. J., Andersen, M. E., and Barton, H. A. (2002), “A Consistent Approach for the Application of Pharmokinetic Modeling in Cancer and Noncancer Risk Assessment,” Environmental Health Perspectives, 110, 85–93.

    Google Scholar 

  • Cook, J., and Stefanski, L. A. (1994), “A Simulation Extrapolation Method for Parametric Measurement Error Models,” Journal of the American Statistical Association, 89, 1314–1328.

    Article  MATH  Google Scholar 

  • Davidian, M., and Carroll, R. J. (1987), “Variance Function Estimation,” Journal of the American Statistical Association, 82, 1079–1091.

    Article  MATH  MathSciNet  Google Scholar 

  • — (1988), “A Note on Extended Quasi-Likelihood,” Journal of the Royal Statistical Society, Series B, 50, 74–82.

    MathSciNet  Google Scholar 

  • Davidian, M., Carroll, R. J., and Smith, W. (1988), “Variance Functions and the Minimum Detectable Concentration in Assays,” Biometrika, 75, 549–556.

    Article  MATH  MathSciNet  Google Scholar 

  • Davidian, M., and Giltinan, D. M. (1995), Nonlinear Models for Repeated Measurement Data, Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • — (2003), “Nonlinear Models for Repeated Measurements: An Overview and Update,” Journal of Agricultural, Biological, and Environmental Statistics, 8, 387–419.

    Article  Google Scholar 

  • Fuller, W. A. (1987), Measurement Error Models, New York: Wiley.

    Book  MATH  Google Scholar 

  • Golding, B. T., and Watson, W. P. (1999), “Possible Mechanisms of Carcinogenesis After Exposure to Benzene,” in Exocyclic Nucleic Acid Adducts in Carcinogenesis and Mutagenesis, IARC Scientific Publications, Lyon, France, pp. 75–88.

    Google Scholar 

  • Higgins, K., Davidian, M., and Giltinan, D. M. (1997), “A Two-Step Approach to Measurement Error in Time-Dependent Covariates in Nonlinear Mixed-Effects Models, With Application to igf-i Pharmacokinetics,” Journal of the American Statistical Association, 92, 436–448.

    Article  MATH  Google Scholar 

  • Hoel, D., Kaplan, N. L., and Anderson, M. W. (1983), “Implication of Nonlinear Kinetics on Risk Estimation in Carcinogenesis,” Science, 219, 1032–1037.

    Article  Google Scholar 

  • Li, Y., and Lin, X. (2004), “Approaches for Linear Regression Models with Measurement Error,” unpublished manuscript.

  • Lindstrom, A. B., Yeowell-O’Connell, K., Waidyanatha, S., McDonald, T. A., Golding, B. T., and M., R. S. (1998), “Formation of Hemoglobin and Albumin Adducts of Benzene Oxide in Mouse, Rat, and Human Blood,” Chemical Research in Toxicology, 11, 302–310.

    Article  Google Scholar 

  • Lyles, R. H., and Kupper, L. L. (1997), “A Detailed Evaluation of Adjustment Methods for Multiplicative Measurement Error in Linear Regression with Applications in Occupational Epidemiology,” Biometrics, 53, 1008–1025.

    Article  MATH  MathSciNet  Google Scholar 

  • — (2000), “Measurement Error Models for Environmental and Occupational Health Applications,” in Handbook of Statistics, Amsterdam: Elsevier Science, 501–518.

    Google Scholar 

  • Perera, F. P. (1997), “Environment and Cancer: Who are Susceptible?” Science, 278, 1068–1073.

    Article  Google Scholar 

  • Qu, Q., Melikian, A. A., Li, G., Shore, R., Chen, L., Cohen, B., Yin, S., Kagan, M. R., Li, H., Meng, M., Jin, X., Winnik, W., Li, Y., Mu, R., and Li, K. (2000), “Validation of Biomarkers in Humans Exposed to Benzene: Urine Metabolites,” American Journal of Industrial Medicine, 37, 522–531.

    Article  Google Scholar 

  • Qu, Q., Shore, R., Li, G., Jin, X., Chen, L. C., Cohen, B., Melikian, A. A., Eastmond, D., Rappaport, S., Li, H., Rupa, D., Waidyanatha, S., Yin, S., Yan, H., Meng, M., Winnik, W., Kwok, E. S., Li, Y., Mu, R., Xu, B., Zhang, X., and Li, K. (2003), “Validation and Evaluation of Biomarkers in Workers Exposed to Benzene in China” (with discussion), Research Report/ Health Effects Institute, pages 1–87.

  • Qu, Q., Shore, R., Li, G., Jin, X., Chen, L. C., Cohen, B., Melikian, A. A., Eastmond, D., Rappaport, S. M., Yin, S., Li, H., Waidyanatha, S., Li, Y., Mu, R., Zhang, X., and Li, K. (2002), “Hematological Changes Among Chinese Workers with a Broad Range of Benzene Exposures,” American Journal of Industrial Medicine, 42, 275–285.

    Article  Google Scholar 

  • Rappaport, S. M. (1991), “Assessment of Long-Term Exposures to Toxic Substances in Air,” Annals of Occupational Hygiene, 31, 61–121.

    Article  Google Scholar 

  • — (1993), “Biological Considerations in Assessing Exposures to Genotoxic and Carcingenic Agents,” International Archives of Occupational and Environmental Health, 65, S29–35.

    Article  Google Scholar 

  • Rappaport, S. M., Waidyanatha, S., Qu, Q., Shore, R., Jin, X., Cohen, B., Chen, L.-C., Melikian, A. A., Yin, S., Yan, H., Xu, B., Mu, R., Li, Y., Zhang, X., and Li, K. (2002), “Albumin Adducts of Benzene Oxide and 1,4-benzoquinone as Measures of Benzene Metabolism,” Cancer Research, 62, 1330–1337.

    Google Scholar 

  • Savitz, D. A., and Andrews, K. W. (1996), “Risk of Myelogenous Leukaemia and Multiple Myeloma in Workers Exposed to Benzene,” Occupational and Environmental Medicine, 53, 357–358.

    Google Scholar 

  • Snyder, R. (2002), “Benzene and Leukemia,” Critical Review of Toxicology, 32, 155–210.

    Article  Google Scholar 

  • Stefanski, L. A., and Cook, J. (1995), “Simulation Extrapolation: The Measurement Error Jackknife,” Journal of the American Statistical Association, 90, 1247–1256.

    Article  MATH  MathSciNet  Google Scholar 

  • Taylor, D. J., Kupper, L. L., and Rappaport, S. M. (2002), “Statistical Methods for Evaluating Exposure-Biomarker Relationships,” in Symposium on Biostatistical and Biomathematical Problems in Environmental Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC.

  • Taylor, D. J., Kupper, L. L., Rappaport, S. M., and Lyles, R. H. (2001), “A Mixture Model for Occupational Exposure Mean Testing With a Limit of Detection,” Biometrics, 57, 681–688.

    Article  MathSciNet  Google Scholar 

  • Wang, N., and Davidian, M. (1996), “ANote on Covariate Measurement Error in Nonlinear Mixed Effects Models,” Biometrika, 83, 801–812.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, N., Lin, X., Gutierrez, R. G., and Carroll, R. J. (1998), “Bias Analysis and Simex Estimation in Generlized Linear Mixed Measurement Error Models,” Journal of the American Statistical Association, 93, 249–262.

    Article  MATH  MathSciNet  Google Scholar 

  • Weaver, M. A., Kupper, L. L., Taylor, D., Kromhout, H., Susi, P., and Rappaport, S. M. (2001), “Simultaneous Assessment of Occupational Exposures from Multiple Worker Groups,” Annals of Occupational Hygiene, 45, 525–542.

    Article  Google Scholar 

  • Yeap, B. Y., Catalano, P. J., Ryan, L. M., and Davidian, D. (2003), “Robust Two-Stage Approach to Repeated Measurements Analysis of Chronic Ozone Exposure in Rats,” Journal of Agricultural, Biological, and Environmental Statistics, 8, 438–454.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent A. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, B.A., Kupper, L.L., Taylor, D.J. et al. Modeling exposure-biomarker relationships: Applications of linear and nonlinear toxicokinetics. JABES 10, 440 (2005). https://doi.org/10.1198/108571105X81012

Download citation

  • Received:

  • DOI: https://doi.org/10.1198/108571105X81012

Key Words

Navigation