Skip to main content
Log in

Mark-recapture with occasion and individual effects: Abundance estimation through Bayesian model selection in a fixed dimensional parameter space

  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

We present a Bayesian mark-recapture method for explicitly communicating uncertainty about the size of a closed population where capture probabilities vary across both individuals and sampling occasions. Heterogeneity is modeled hierarchically using a continuous logistic-Normal model to specify the capture probabilities for both individuals that are captured on at least one occasion and individuals that are never captured and so remain undetected. Inference about how many undetected individuals to include in the model is accomplished through a Bayesian model selection procedure using MCMC, applied to a product space of possible models for different numbers of undetected individuals. Setting the estimation problem in a fixed dimensional parameter space enables the model selection procedure to be performed using the freely available WinBUGS software. The outcome of inference is a full “posterior” probability distribution for the population size parameter. We demonstrate this method through an example involving real mark-recapture data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agresti, A. (1994). “Simple Capture-Recapture Models Permitting Unequal Catchability and Variable Sampling Effort,” Biometrics, 50, 494–500.

    Article  Google Scholar 

  • Alho, J. M. (1990), “Logistic Regression in Capture-Recapture Models,” Biometrics, 46, 623–635.

    Article  MATH  MathSciNet  Google Scholar 

  • Brooks, S. P. (1998). “Markov Chain Monte Carlo Method and its Application,” The Statistician, 47, 69–100.

    Google Scholar 

  • Brooks, S. P., and Gelman, A. (1998), “General Methods for Monitoring Convergence of Iterative Simulations,” Journal of Computational and Graphical Statistics, 7, 434–455.

    Article  MathSciNet  Google Scholar 

  • Buckland, S. T., Anderson, D. R., Burnham, K. P. and Laake, J. L. (1993), Distance Sampling, Estimating Abundance of Biological Populations, London: Chapman and Hall.

    Google Scholar 

  • Buckland, S. T., Goudie, I. B. J., and Borchers, D. L. (2000), “Wildlife Population Assessment: Past Developments and Future Directions,” Biometrics, 56, 1–12.

    Article  MATH  Google Scholar 

  • Buckland, S. T., and Garthwaite, P. H. (1991), “Quantifying Precision of Mark-Recapture Estimates Using the Bootstrap and Related Methods,” Biometrics, 47, 255–268.

    Article  Google Scholar 

  • Burnham, K. P., and Overton, W. S. (1978), “Estimation of the Size of a Closed Population when Capture Probabilities Vary,” Biometrika, 65, 625–633.

    Article  MATH  Google Scholar 

  • Carlin, B. P., and Chib, S. (1995), “Bayesian Model Choice via Markov Chain Monte Carlo,” Journal of the Royal Statistical Society, Series B, 57, 473–484.

    MATH  Google Scholar 

  • Carothers, A. D. (1973a), “Capture-Recapture Methods Applied to a Population With Known Parameters,” Journal of Animal Ecology, 42, 125–146.

    Article  Google Scholar 

  • — (1973b), “The Effects of Unequal Catchability on Jolly-Seber Estimates” Biometrics, 29, 79–100.

    Article  Google Scholar 

  • Casella, G., and George, E. I. (1992), “Explaining the Gibbs Sampler,” The American Statistician, 46, 167–174.

    Article  MathSciNet  Google Scholar 

  • Chao, A., Lee, S. M., and Jeng, S. L. (1992), “Estimating Population Size for Capture-Recapture Data when Capture Probabilities Vary by Time and by Individual Animal,” Biometrics, 48, 201–216.

    Article  MATH  Google Scholar 

  • Cormack, R. M. (1989), “Log-Linear Models for Capture-Recapture,” Biometrics, 45, 395–413.

    Article  MATH  Google Scholar 

  • — (1992), “Interval Estimation for Mark-Recapture Studies of Closed Populations,” Biometrics, 48, 567–576.

    Article  MathSciNet  Google Scholar 

  • Coull, B. A., and Agresti, A. (1999), “The Use of Mixed Logit Models to Reflect Heterogeneity in Capture-Recapture Studies,” 55, 294–301.

    MATH  Google Scholar 

  • Darroch, J. N., Fienberg, S. E., Glonek, G. F. V., and Junker, B. W. (1993), “A Three-Sample Multiple-Recapture Approach to Census Population Estimation with Heterogeneous Catchability,” Journal of the American Statistical Association, 88, 1137–1148.

    Article  Google Scholar 

  • Dorazio, R. M., and Royle, A. J. (2003), “Mixture Models for Estimating the Size of a Closed Population When Capture Rates Vary Among Individuals,” Biometrics, 59, 351–364.

    Article  MathSciNet  Google Scholar 

  • Ellison, A. M. (1996), “An Introduction to Bayesian Inference for Ecological Research and Environmental Decision-Making,” Ecological Applications, 6, 1036–1046.

    Article  Google Scholar 

  • Fienberg, S. E., Johnson, M. S., and Junker, B. W. (1999), “Classical Multilevel and Bayesian Approaches to Population Size Estimation Using Multiple Lists,” Journal of Royal Statistical Society, Series A, 162, 383–405.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern H. S., and Rubin, D. B. (1995), Bayesian Data Analysis, London: Chapman and Hall.

    Google Scholar 

  • Gelman, A., Meng, X. L., and Stern, H. S. (1996), “Posterior Predictive Assessment of Model Fitness via Realized Discrepancies,” Statistica Sinica, 6, 733–807.

    MATH  MathSciNet  Google Scholar 

  • Gelman, A., and Rubin, D. B. (1992), “Inference From Iterative Simulation Using Multiple Sequences,”(with discussion), Statistical Science, 7, 457–511.

    Article  Google Scholar 

  • George, E. I., and Robert, C. P. (1992), “Capture-Recapture Estimation via Gibbs Sampling,” Biometrika, 79, 677–683.

    MATH  MathSciNet  Google Scholar 

  • Geweke, J. (1996), “Variable Selection and Model Comparison in Regression,” in Bayesian Statistics 5, eds. J. M. Bernado, J. O. Berger, A. P. Dawid, and A. F. M. Smith, New York: Oxford University Press, pp. 609–620.

    Google Scholar 

  • Gilks, W. R., Thomas, A., and Spiegelhalter, D. J. (1994), “A Language and Program for Complex Bayesian Modeling,” The Statistician, 43, 169–177.

    Article  Google Scholar 

  • — (1996). Markov Chain Monte Carlo in Practice, London: Chapman and Hall.

    MATH  Google Scholar 

  • Green, P. (1995), “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination,” Biometrika, 82, 711–732.

    Article  MATH  MathSciNet  Google Scholar 

  • Huggins, R. M. (1989), “On the Statistical Analysis of Capture Experiments,” Biometrika, 76, 133–140.

    Article  MATH  MathSciNet  Google Scholar 

  • Jeffreys, H. (1946), “An Invariant Form for the Prior Probability in Estimation Problems,” in Proceedings of the Royal Statistical Society, Series A, 186, pp. 453–461.

  • King, R., and Brooks, S. P. (2001), “On the Bayesian Analysis of Population Size,” Biometrika, 88, 317–336.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuo, L., and Mallick, B. (1998), “Variable Selection for Regression Models,” Sankhya, Ser. B, 60, 65–81.

    MATH  MathSciNet  Google Scholar 

  • Lee, S. M., and Chen, C. W. S. (1998), “Bayesian Inference on Population Size for Behavioural Response Models,” Statistica Sinica, 8, 1233–1248.

    MATH  MathSciNet  Google Scholar 

  • Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000), “WinBUGS—A Bayesian Modeling Framework: Concepts, Structure, and Extensibility,” Statistics and Computing, 10, 325–337.

    Article  Google Scholar 

  • Norris, J. L., and Pollock, K. H. (1996), “Nonparametric MLE Under Two Closed Capture-Recapture Models With Heterogeneity,” Biometrics, 52, 639–649.

    Article  MATH  Google Scholar 

  • Otis, D. L., Burnham, K. P., White, G. C., and Anderson, D. R. (1978), “Statistical Inference From Capture Data on Closed Animal Populations,” Wildlife Monographs, 62, 1–135.

    Google Scholar 

  • Pollock, K. H. (1991), “Modeling Capture, Recapture, and Removal Statistics for Estimation of Demographic Parameters for Fish and Wildlife Populations: Past, Present and Future,” Journal of the American Statistical Association, 86, 225–238.

    Article  Google Scholar 

  • Pollock, K. H., Nichols, J. D., Brownie, C., and Hines, J. E. (1990), “Statistical Inference for Capture-Recapture Experiments”, Wildlife Monographs, 107.

  • Pledger, S. (2000), “Unified Maximum Likelihood Estimates for Closed Capture-Recapture Models Using Mixtures,” Biometrics, 56, 434–442.

    Article  MATH  Google Scholar 

  • Rasch, G. (1960), Probabilsitic Models for Some Intelligence and Attainment Tests. Chicago: University of Chicago Press.

    Google Scholar 

  • Schwarz, C. J., and Seber, G. A. F. (1999), “Estimating Animal Abundance, Review III,” Statistical Science 14, 427–456.

    Article  Google Scholar 

  • Seber, G. A. F. (1982), The Estimation of Animal Abundance and Related Parameters (2nd ed.), London: Charles Griffin and Company Ltd.

    Google Scholar 

  • Smith, P. J. (1991), “Bayesian Analysis for a Multiple Capture-Recapture Model,” Biometrika, 78, 399–407.

    Article  MathSciNet  Google Scholar 

  • Wade, P. R. (2000), “Bayesian Methods in Conservation Biology,” Conservation Biology, 14, 1308–1316.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Durban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durban, J.W., Elston, D.A. Mark-recapture with occasion and individual effects: Abundance estimation through Bayesian model selection in a fixed dimensional parameter space. JABES 10, 291–305 (2005). https://doi.org/10.1198/108571105X58630

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1198/108571105X58630

Key Words

Navigation