Skip to main content

Advertisement

Log in

Nonlinear models for repeated measurement data: An overview and update

  • Editor’s Invited Article
  • Published:
Journal of Agricultural, Biological, and Environmental Statistics Aims and scope Submit manuscript

Abstract

Nonlinear mixed effects models for data in the form of continuous, repeated measurements on each of a number of individuals, also known as hierarchical nonlinear models, are a popular platform for analysis when interest focuses on individual-specific characteristics. This framework first enjoyed widespread attention within the statistical research community in the late 1980s, and the 1990s saw vigorous development of new methodological and computational techniques for these models, the emergence of general-purpose software, and broad application of the models in numerous substantive fields. This article presentsan overview of the formulation, interpretation, and implementation of nonlinear mixed effects models and surveys recent advances and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beal, S. L., and Sheiner, L. B. (1982), “Estimating Population Pharmacokinetics,” CRC Critical Reviews in Biomedical Engineering, 8, 195–222.

    Google Scholar 

  • Bennett, J., and Wakefield, J. (2001), “Errors-in-Variables in Joint Population Pharmacokinetic/Pharmacodynamic Modeling,” Biometrics, 57, 803–812.

    Article  MathSciNet  Google Scholar 

  • Boeckmann, A. J., Sheiner, L. B., and Beal S. L. (1992), NONMEM User’s Guide, Part V, Introductory Guide, San Francisco: University of California.

    Google Scholar 

  • Breslow, N. E., and Clayton, D. G. (1993), “Approximate Inference in Generalized Linear Mixed Models,” Journal of the American Statistical Association, 88, 9–25.

    Article  MATH  Google Scholar 

  • Carlin, B. P., and Louis, T. A. (2000) Bayes and Empirical Bayes Methods for Data Analysis (2nd ed.), New York: Chapman and Hall/CRC Press.

    MATH  Google Scholar 

  • Chu, K. K., Wang, N. Y., Stanley, S., and Cohen, N. D. (2001), “Statistical Evaluation of the Regulatory Guidelines for Use of Furosemide in Race Horses,” Biometrics, 57, 294–301.

    Article  MathSciNet  Google Scholar 

  • Clarkson, D. B., and Zhan, Y. H. (2002), “Using Spherical-Radial Quadrature to Fit Generalized Linear Mixed Effects Models,” Journal of Computational and Graphical Statistics, 11, 639–659.

    Article  MathSciNet  Google Scholar 

  • Clayton, C. A., Starr, T. B., Sielken, R. L. Jr., Williams, R. L., Pontal, P. G., and Tobia, A. J. (2003), “Using a Nonlinear Mixed Effects Model to Characterize Cholinesterase Activity in Rats Exposed to Aldicarb,” Journal of Agricultural, Biological, and Environmental Statistics, 8, 420–437.

    Article  Google Scholar 

  • Concordet, D., and Nunez, O. G. (2000), “Calibration for Nonlinear Mixed Effects Models: An Application to the Withdrawal Time Prediction,” Biometrics, 56, 1040–1046.

    Article  MATH  MathSciNet  Google Scholar 

  • Davidian, M., and Gallant, A. R. (1992a), “Nlmix: A Program for Maximum Likelihood Estimation of the Nonlinear Mixed Effects Model With a Smooth Random Effects Density,” Department of Statistics, North Carolina State University.

  • —, (1992b), “Smooth Nonparametric Maximum Likelihood Estimation for Population Pharmacokinetics, With Application to Quinidine,” Journal of Pharmacokinetics and Biopharmaceutics, 20, 529–556.

    Article  Google Scholar 

  • — (1993), “The Nonlinear Mixed Effects Model With a Smooth Random Effects Density,” Biometrika, 80, 475–488.

    Article  MATH  MathSciNet  Google Scholar 

  • Davidian, M., and Giltinan, D. M. (1993), “Some Simple Methods for Estimating Intra-individual Variability in Nonlinear Mixed Effects Models,” Biometrics, 49, 59–73.

    Article  Google Scholar 

  • — (1995), Nonlinear Models for Repeated Measurement Data, New York: Chapman and Hall.

    Google Scholar 

  • Demidenko, E. (1997), “Asymptotic Properties of Nonlinear Mixed Effects Models” in Modeling Longitudinal and Spatially Correlated Data: Methods, Applications, and Future Directions, eds. T. G. Gregoire, D. R. Brillinger, P. J. Diggle, E. Russek-Cohen, W. G. Warren, and R. D. Wolfinger, New York: Springer.

    Google Scholar 

  • Dey, D. K., Chen, M. H., and Chang, H. (1997), “Bayesian Approach for Nonlinear Random Effects Models,” Biometrics, 53, 1239–1252.

    Article  MATH  Google Scholar 

  • Diggle, P. J., Heagerty, P., Liang, K.-Y., and Zeger, S. L. (2001), Analysis of Longitudinal Data (2nd ed.), Oxford: Oxford University Press.

    Google Scholar 

  • Fang, Z., and Bailey, R. L. (2001), “Nonlinear Mixed Effects Modeling for Slash Pine Dominant Height Growth Following Intensive Silvicultural Treatments” Forest Science, 47, 287–300.

    Google Scholar 

  • Galecki, A. T. (1998), “NLMEM: A New SAS/IML Macro for Hierarchical Nonlinear Models,” Computer Methods and Programs in Biomedicine, 55, 207–216.

    Article  Google Scholar 

  • Gelman, A., Bois, F., and Jiang, L. M. (1996), “Physiological Pharmacok inetic Analysis Using Population Modeling and Informative Prior Distributions,” Journal of the American Statistical Association, 91, 1400–1412.

    Article  MATH  Google Scholar 

  • Gregoire, T. G., and Schabenberger, O. (1996a), “Nonlinear Mixed-Effects Modeling of Cumulative Bole Volume With Spatially-Correlated Within-Tree Data,” Journal of Agricultural, Biological, and Environmental Statistics, 1, 107–119.

    Article  MathSciNet  Google Scholar 

  • — (1996b), “A Non-Linear Mixed-Effects Model to Predict Cumulative Bole Volume of Standing Trees,” Journal of Applied Statistics, 23, 257–271.

    Article  Google Scholar 

  • Hall, D. B., and Bailey, R. L. (2001), “Modeling and Prediction of Forest Growth Variables Based on Multilevel Nonlinear Mixed Models,” Forest Science, 47, 311–321.

    Google Scholar 

  • Hall, D. B., and Clutter, M. (2003), “Multivariate Multilevel Nonlinear Mixed Effects Models for Timber Yield Predictions”, Biometrics, in press.

  • Hartford, A., and Davidian, M. (2000), “Consequences of Misspecifying Assumptions in Nonlinear Mixed Effects Models,” Computational Statistics and Data Analysis, 34, 139–164.

    Article  MATH  Google Scholar 

  • Heagerty, P. (1999), “Marginally Specified Logistic-Normal Models for Longitudinal Binary Data,” Biometrics, 55, 688–698.

    Article  MATH  Google Scholar 

  • Karlsson, M. O., Beal, S. L., and Sheiner, L. B. (1995), “Three New Residual Error Models for Population PK/PD Analyses,” Journal of Pharmacokinetics and Biopharmaceutics, 23, 651–672.

    Article  Google Scholar 

  • Karlsson, M. O., and Sheiner, L. B. (1993), “The Importance of Modeling Inter-Occasion Variability in Population Pharmacokinetic Analyses,” Journal of Pharmacokinetics and Biopharmacentics, 21, 735–750.

    Article  Google Scholar 

  • Ke, C., and Wang, Y. (2001), “Semiparametric Nonlinear Mixed Models and Their Applications,” Journal of the American Statistical Association, 96, 1272–1298.

    Article  MATH  MathSciNet  Google Scholar 

  • Ko, H. J., and Davidian, M. (2000), “Correcting for Measurement Error in Individual-Level Covariates in Nonlinear Mixed Effects Models,” Biometrics, 56, 368–375.

    Article  MATH  MathSciNet  Google Scholar 

  • Lai, T. L., and Shih, M.-C. (2003), “Nonparametric Estimation in Nonlinear Mixed Effects Models,” Biometrika, 90, 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  • Law, N. J., Taylor, J. M. G., and Sandler, H. (2002), “The Joint Modeling of a Longitudinal Disease Progression Marker and the Failure Time Process in the Presence of a Cure,” Biostatistics, 3, 547–563.

    Article  MATH  Google Scholar 

  • Li, L., Brown, M. B., Lee, K. H., and Gupta, S. (2002), “Estimation and Inference for a Spline-Enhanced Population Pharmacokinetic Model,” Biometrics, 58, 601–611.

    Article  MathSciNet  Google Scholar 

  • Lindstrom, M. J. (1995), “Self-Modeling With Random Shift and Scale Parameters and a Free-Knot Spline Shape Function,” Statistics in Medicine, 14, 2009–2021.

    Article  Google Scholar 

  • Lindstrom, M. J., and Bates, D. M. (1990), “Nonlinear Mixed Effects Models for Repeated Measures Data,” Biometrics, 46, 673–687.

    Article  MathSciNet  Google Scholar 

  • Littell, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. (1996), SAS System for Mixed Models, Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Lopes, H. F., Müller, P., and Rosner, G. L. (2003), “Bayesian Meta-Analysis for Longitudinal Data Models Using Multivariate Mixture Priors,” Biometrics, 59, 66–75.

    Article  MathSciNet  Google Scholar 

  • Mallet, A. (1986), “A Maximum Likelihood Estimation Method for Random Coefficient Regression Models,” Biometrika, 73, 645–656.

    Article  MATH  MathSciNet  Google Scholar 

  • Mandema, J. W., Verotta, D., and Sheiner L. B. (1992), “Building Population Pharmacokinetic/ Pharmacodynamic Models,” Journal of Pharmacokinetics and Biopharmacentics, 20, 511–529.

    Article  Google Scholar 

  • McRoberts, R. E. and Brooks, R. T., and Rogers, L. L. (1998), “Using Nonlinear Mixed Effects Models to Estimate Size-Age Relationships for Black Bears,” Canadian Journal of Zoology, 76, 1098–1106.

    Article  Google Scholar 

  • Mentré, F., and Mallet, A. (1994), “Handling Covariates in Population Pharmacokinetics,” International Journal of Biomedical Computing, 36, 25–33.

    Article  Google Scholar 

  • Mezzetti, M., Ibrahim, J. G., Bois, F. Y., Ryan, L. M., Ngo, L., and Smith, T. J. (2003), “A Bayesian Compartmental Model for the Evaluation of 1,3-Butadiene Metabolism,” Applied Statistics, 52, 291–305.

    MATH  MathSciNet  Google Scholar 

  • Mikulich, S. K., Zerbe, G. O., Jones, R. H., and Crowley, T. J. (2003), “Comparing Linear and Nonlinear Mixed Model Approaches to Cosinor Analysis,” Statistics in Medicine, 22, 3195–3211.

    Article  Google Scholar 

  • Monahan, J., and Genz, A. (1997), “Spherical-Radial Integration Rules for Bayesian Computation,” Journal of the American Statistical Association, 92, 664–674.

    Article  MATH  Google Scholar 

  • Morrell, C. H., Pearson, J. D., Carter, H. B., and Brant, L. J. (1995) “Estimating Unknown Transition Times Using a Piecewise Nonlinear Mixed-Effects Model in Men With Prostate Cancer,” Journal of the American Statistical Association, 90, 45–53.

    Article  Google Scholar 

  • Müller, P., and Rosner, G. L. (1997), “A Bayesian Population Model With Hierarchical Mixture Priors Applied to Blood Count Data,” Journal of the American Statistical Association, 92, 1279–1292.

    Article  MATH  Google Scholar 

  • Notermans, D. W., Goudsmit, J., Danner, S. A., de Wolf, F., Perelson, A. S., and Mittler, J. (1998), “Rate of HIV-1 Decline Following Antiretroviral Therapy is Related to Viral Load at Baseline and Drug Regimen,” AIDS, 12, 1483–1490.

    Article  Google Scholar 

  • Oberg, A., and Davidian, M. (2000), “Estimating Data Transformations in Nonlinear Mixed Effects Models,” Biometrics, 56, 65–72.

    Article  MATH  Google Scholar 

  • Pauler, D., and Finkelstein, D. (2002), “Predicting Time to Prostate Cancer Recurrence Based on Joint Models for Non-linear Longitudinal Biomarkers and Event Time,” Statistics in Medicine, 21, 3897–3911.

    Article  Google Scholar 

  • Pilling, G. M., Kirkwood, G. P., and Walker, S. G. (2002), “An Improved Method for Estimating Individual Growth Variability in Fish, and the Correlation Between von Bertalanffy Growth Parameters,” Canadian Journal of Fisheries and Aquatic Sciences, 59, 424–432.

    Article  Google Scholar 

  • Pinheiro, J. C., and Bates, D. M. (1995), “Approximations to the Log-Likelihood Function in the Nonlinear Mixed Effects Model,” Journal of Computational and Graphical Statistics, 4, 12–35.

    Article  Google Scholar 

  • — (2000), Mixed-Effects Models in S and Splus, New York: Springer.

    Google Scholar 

  • Raudenbush, S. W., Yang, M. L., and Yosef, M. (2000), “Maximum Likelihood for Generalized Linear Models With Nested Random Effects Via High-Order, Multivariate Laplace Approximation,” Journal of Computational and Graphical Statistics, 9, 141–157.

    Article  MathSciNet  Google Scholar 

  • Rekaya, R., Weigel, K. A., and Gianola, D. (2001), “Hierarchical Nonlinear Model for Persistency of Milk Yield in the First Three Lactations of Holsteins,” Lifestock Production Science, 68, 181–187.

    Article  Google Scholar 

  • Rodriguez-Zas, S. L., Gianola, D., and Shook, G. E. (2000), “Evaluation of Models for Somatic Cell Score Lactation Patterns in Holsteins,” Lifestock Production Science, 67, 19–30.

    Article  Google Scholar 

  • Rosner, G. L. and Müller, P. (1994), “Pharmacokinetic/Pharmacodynamic Analysis of Hematologic Profiles,” Journal of of Pharmacokinetics and Biopharmaceutics, 22, 499–524.

    Article  Google Scholar 

  • SAS Institute (1999) PROC NLMIXED, SAS Online Doc, Version 8, Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Schabenberger, O., and Pierce, F. J. (2001), Contemporary Statistical Models for the Plant and Soil Sciences, New York: CRC Press.

    Google Scholar 

  • Schumitzky, A. (1991), “Nonparametric EM Algorithms for Estimating Prior Distributions,” Applied Mathematics and Computation, 45, 143–157.

    Article  MATH  MathSciNet  Google Scholar 

  • Sheiner, L. B., and Ludden, T. M. (1992), “Population Pharmacokinetics/Pharmacodynamics,” Annual Review of Pharmacological Toxicology, 32, 185–209.

    Google Scholar 

  • Sheiner, L. B., Rosenberg, B., and Marathe, V. V. (1997), “Estimation of Population Characteristics of Population Pharmacokinetic Parameters From Routine Clinical Data,” Journal of Pharmacokinetics and Biopharmaceutics, 8, 635–651.

    Google Scholar 

  • Steimer, J. L., Mallet, A., Golmard, J. L., and Boisvieux, J. F. (1984), “Alternative Approaches to Estimation of Population Pharmacokinetic Parameters: Comparison with the Nonlinear Mixed Effect Model,” Drug Metabolism Reviews, 15, 265–292.

    Article  Google Scholar 

  • Verbeke, G., and Molenberghs, G. (2000), Linear Mixed Models for Longitudinal Data, New York: Springer.

    MATH  Google Scholar 

  • Vonesh, E. F. (1992), “Mixed-Effects Nonlinear Regression for Unbalanced Repeated Measures” Biometrics, 48, 1–17.

    Article  MathSciNet  Google Scholar 

  • — (1996), “A Note on the Use of Laplace’s Approximation for Nonlinear Mixed-Effects Models,” Biometrika, 83, 447–452.

    Article  MATH  MathSciNet  Google Scholar 

  • Vonesh, E. F., and Chinchilli, V. M. (1997), Linear and Nonlinear Models for the Analysis of Repeated Measurements New York: Marcel Dekker.

    MATH  Google Scholar 

  • Vonesh, E. F., Chinchilli, V. M., and Pu, K. W. (1996), “Goodness-Of-Fit in Generalized Nonlinear Mixed-Effects Models,” Biometrics, 52, 572–587.

    Article  MATH  Google Scholar 

  • Vonesh, E. G., Wang, H., Nie, L., and Majumdar, D. (2002), “Conditional Second-Order Generalized Estimating Equations for Generalized Linear and Nonlinear Mixed-Effects Models,” Journal of the American Statistical Association, 97, 271–283.

    Article  MATH  MathSciNet  Google Scholar 

  • Wakefield, J. (1996), “The Bayesian Analysis of Population Pharmacokinetic Models,” Journal of the American Statistical Association, 91, 62–75.

    Article  MATH  Google Scholar 

  • Wakefield, J., and Rahman, N. (2000), “The Combination of Population Pharmacokinetic Studies,” Biometrics, 56, 263–270.

    Article  MATH  Google Scholar 

  • Wakefield, J. C., Smith, A. F. M., Racine-Poon, A., and Gelfand, A. E., (1994), “Bayesian Analysis of Linear and Nonlinear Population Models by Using the Gibbs Sampler,” Applied Statistics, 43, 201–221.

    Article  MATH  Google Scholar 

  • Walker, S. G. (1996), “An EM algorithm for Nonlinear Random Effects Models,” Biometrics, 52, 934–944.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, N., and Davidian, M. (1996), “A Note on Covariate Measurement Error in Nonlinear Mixed Effects Models,” Biometrika, 83, 801–812.

    Article  MATH  MathSciNet  Google Scholar 

  • Wolfinger, R. (1993), “Laplace’s Approximation for Nonlinear Mixed Models,” Biometrika, 80, 791–795.

    Article  MATH  MathSciNet  Google Scholar 

  • Wolfinger, R. D., and Lin, X. (1997), “Two Taylor-series Approximation Methods for Nonlinear Mixed Models,” Computational Statistics and Data Analysis, 25, 465–490.

    Article  MATH  Google Scholar 

  • Wu, L. (2002), “A Joint Model for Nonlinear Mixed-Effects Models With Censoring and Covariates Measured With Error, With Application to AIDS Studies,” Journal of the American Statistical Association, 97, 955–964.

    Article  MATH  MathSciNet  Google Scholar 

  • Wu, H. L., and Ding, A. A. (1999), “Population HIV-1 Dynamics in vivo: Applicable Models and Inferential Tools for Virological Data From AIDS Clinical Trials,” Biometrics, 55, 410–418.

    Article  MATH  Google Scholar 

  • Wu, H. L., and Wu, L. (2002a), “Identification of Significant Host Factors for HIV Dynamics Modelled by Non-Linear Mixed-Effects Models,” Statistics in Medicine, 21, 753–771.

    Article  Google Scholar 

  • — (2002b), “Missing Time-Dependent Covariates in Human Immunodeficiency Virus Dynamic Models,” Applied Statistics, 51, 2002.

    Google Scholar 

  • Yeap, B. Y., Catalano, P. J., Ryan, L. M., and Davidian, M. (2003), “Robust Two-Stage Approach to Repeated Measurements Analysis of Chronic Ozone Exposure in Rats,” Journal of Agricultural, Biological, and Environmental Statistics, 8, 438–454.

    Article  Google Scholar 

  • Yeap, B. Y., and Davidian, M. (2001), “Robust Two-Stage Estimation in Hierarchical Nonlinear Models,” Biometrics, 57, 266–272.

    Article  MathSciNet  Google Scholar 

  • Young, D. A., Zerbe, G. O., and Hay, W. W. (1997), “Fieller’s Theorem, Scheffé Simultaneous Confidence Intervals, and Ratios of Parameters of Linear and Nonlinear Mixed-Effects Models,” Biometrics, 53, 838–347.

    Article  MATH  Google Scholar 

  • Zeng, Q., and Davidian, M. (1997), “Testing Homgeneity of Intra-run Variance Parameters in Immunoassay,” Statistics in Medicine, 16, 1765–1776.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Davidian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidian, M., Giltinan, D.M. Nonlinear models for repeated measurement data: An overview and update. JABES 8, 387 (2003). https://doi.org/10.1198/1085711032697

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1198/1085711032697

Key Words

Navigation