Enhanced diagnostics for the spatial analysis of field trials

  • Katia T. Stefanova
  • Alison B. Smith
  • Brian R. Cullis


We report an analysis of a series of uniformity field trials using the technique proposed by Gilmour, Cullis, and Verbyla. In particular, we clarify the role of the sample variogram and present a range of enhanced graphical diagnostics to aid the spatial modeling process. We highlight the implications of the presence of extraneous variation related to commonly used agronomic practices, such as serpentine harvesting.

Key words

Agronomic practice Coverage interval Mixed model Residual maximum likelihood Spatial modeling Variogram 


  1. Atkinson, A. C. (1985), Plots, Transformations and Regressions, Oxford: Clarendon Press.Google Scholar
  2. Besag, J., and Higdon, D. (1999), “Bayesian Analysis of Agricultural Field Experiments With Discussion,” Journal of the Royal Statistical Society, Ser. B, 61, 691–746.MATHCrossRefMathSciNetGoogle Scholar
  3. Besag, J., and Kempton, R. A. (1986), “Statistical Analysis of Field Experiments Using Neighbouring Plots,” Biometrics, 42, 231–251.MATHCrossRefGoogle Scholar
  4. Box, G. E. P., and Jenkins, G. M. (1970), Time Series Analysis, Forecasting and Control, San Francisco: Holden-Day.MATHGoogle Scholar
  5. Bulter, D. G., Cullis, B. R., Gilmour, A. R., and Gogel, B. J. (2007), Analysis of Mixed Models for S Language Environments, ASReml-R Reference Manual Release 2. Training and Development Series, No. QE02001. Brisbane, Australia: Queensland Department of Primary Industries and Fisheries.Google Scholar
  6. Cressie, N. A. C. (1991), Statistics for Spatial Data, New York: Wiley.MATHGoogle Scholar
  7. Cullis, B. R., and Gleeson, A. C. (1991), “Spatial Analysis of Field Experiments—An Extension to Two Dimensions,” Biometrics, 47, 1449–1460.CrossRefGoogle Scholar
  8. Cullis, B. R., Gogel, B. J., Verbyla, A. P., and Thompson, R. (1998), “Spatial Analysis of Multi-Environment Early Generation Trials,” Biometrics, 54, 1–18.MATHCrossRefMathSciNetGoogle Scholar
  9. Cullis, B. R., McGilchrist, C. A., and Gleeson, A. C. (1991), “Error Model Diagnostics in the General Linear Model Relevant to the Analysis of Repeated Measures and Field Experiments,” Journal of the Royal Statistical Society, Ser. B, 53, 409–416.MATHMathSciNetGoogle Scholar
  10. Cullis, B. R., Smith, A., and Coombes, N. E., (2006), “On the Design of Early Generation Variely Trials With Correlated Data,” Journal of Agricultural, Biological and Environmental Statistics, 11, 381–393.CrossRefGoogle Scholar
  11. Diggle, P. J., and Verbyla, A. P. (1998), “Nonparametric Estimation of Covariance Structure in Longitudinal Data,” Biometrics, 54, 401–415.MATHCrossRefGoogle Scholar
  12. Eccleston, J., and Chan, B. (1998), “Design Algorithms for Correlated Data,” in COMPSTAT98 Proceedings in Computational Statistics, Heidelberg: Physica-Verlag, pp. 41–52.Google Scholar
  13. Gilmour, A. R., Cullis, B. R., and Verbyla, A. P. (1997), “Accounting for Natural and Extraneous Variation in the Analysis of Field Experiments,” Journal of Agricultural, Biological, and Environmental Statistics, 2, 269–273. smith99CrossRefMathSciNetGoogle Scholar
  14. Gilmour, A. R., Cullis, B. R., Verbyla, A. P., and Smith, A. B. (1999), “Contribution to the Discussion of Bayesian Analysis of Agricultural Field Experiments,” Journal of the Royal Statistical Society, Ser. B. 61, 691–746.CrossRefGoogle Scholar
  15. Haskard, K. A., Cullis, B. R., and Verbyla, A. P. (2007), “A nisotropic Matern Correlation and Spatial Prediction Using REML,” Journal of Agricultural, Biological and Environmental Statistics, 12, 147–160.CrossRefMathSciNetGoogle Scholar
  16. Kenward, M. G., and Roger, J. H. (1997), “The Precision of Fixed Effects Estimates From Restricted Maximum Likelihood,” Biometrics, 53, 983–997.MATHCrossRefGoogle Scholar
  17. Martin, R. J. (1990), “The Use of Time-Series Models and Methods in the Analysis of Agricultural Field Trials,” Communications in Statistics, 19, 55–81.CrossRefGoogle Scholar
  18. Stram, D. O., and Lee, J. W. (1994), “Variance Components Testing in the Longitudianl Mixed Effects Setting,” Biometrics, 50, 1171–1177.MATHCrossRefGoogle Scholar
  19. Verbyla, A. P., Cullis, B. R., Kenward, M. G., and Welham, S. J. (1999), “The Analysis of Designed Experiments and Longitudinal Data Using Smoothing Splines” (with discussion), Journal of the Royal Statistical Society, Ser. C, 61, 269–312.Google Scholar
  20. Wilkinson, G. N., Eckert, S. R., Hancock, T. W., and Mayo, O. (1983), “Nearest Neighbour (NN) Analysis of Field Experiments” (with discussion), Journal of the Royal Statistical Society, Ser. B, 45, 54–211.Google Scholar
  21. Zimmerman, D. L., and Harville, D. A. (1991), “A Random Field Approach to the Analysis of Field Plot Experiments,” Biometrics, 47, 223–239.CrossRefGoogle Scholar

Copyright information

© International Biometric Society 2009

Authors and Affiliations

  • Katia T. Stefanova
    • 1
  • Alison B. Smith
    • 2
  • Brian R. Cullis
    • 2
  1. 1.Department of Agriculture and Food WAPerthAustralia
  2. 2.NSWDPI Wagga Wagga Agricultural InstituteAustralia

Personalised recommendations