Advertisement

A gamma-shaped detection function for line-transect surveys with mark-recapture and covariate data

  • E. F. BeckerEmail author
  • P. X. Quang
Article

Abstract

We have developed a procedure for estimating animal population size from aerial survey data collected simultaneously by two observers on the same sighting platform. We used a line transect sample design where transects follow elevation contours in mountainous terrain. Because our 10 data sets from aerial line transect surveys, conducted over a terrestrial environment, consistently show unimodal detection shapes, we chose a gamma-shaped detection function that is unimodal and admits covariates. We fit models separately to data from each observer, and then used all of the data to estimate the probabilities at the apex of the detection curves. We used a Horvitz-Thompson estimator to estimate the population size. We illustrate our procedure on a recently collected brown bear data set.

The programs and data set used in this work are available in the online supplements.

Key Words

Contour transect Distance sampling Double-count Horvitz-Thompson Population estimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13253_2009_140200207_MOESM1_ESM.zip (37 kb)
Supplementary material, approximately 36.5 KB.

References

  1. Akaike, H. (1985), “Prediction and Entrophy,” in A Celebration of Statistics, eds. A. C. Atkinson and S. E. Finberg, Berlin: Springer-Verlag, pp. 1–24.Google Scholar
  2. Aldredge, J. R., and Gates, C. E. (1985), “Line Transect Estimators for Left-Truncated Distributions,” Biometrics, 41, 273–280.CrossRefGoogle Scholar
  3. Alpiza-Jara, R., and Pollock, K. H. (1996), “A Combination of Line Transect and Capture-Recapture Sampling Model for Multiple Observers in Aerial Surveys,” Journal of Ecological and Environmental Statistics, 3, 311–327.CrossRefGoogle Scholar
  4. Borchers, D. L., and Burnham, K. P. (2004), “General Formulation for Distance Sampling,” in Advanced Distance Sampling, Estimating Abundance of Biological Populations, eds. S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas, Oxford: Oxford University Press, pp. 6–30.Google Scholar
  5. Borchers, D. L., Buckland, S. T., Goedhart, P. W., Clarke, E. D., and Hedley, S. L. (1998a), “Horwitz-Thompson Estimators for Double Platform Line Transect Surveys,” Biometrics, 54, 1221–1237.zbMATHCrossRefGoogle Scholar
  6. Borchers, D. L., Laake, J. L., Southwell, C., and Paxton, C. G. M. (2006), “Accommodating Unmodeled Heterogeneity in Double-Observer Distance Sampling Surveys,” Biometrics, 62, 372–378.CrossRefMathSciNetGoogle Scholar
  7. Borchers, D. L., Zucchini, W., and Fewster, R. M. (1998b), “Mark Recapture Models for Line Transect Surveys,” Biometrics, 54, 1207–1220.zbMATHCrossRefGoogle Scholar
  8. Buckland, S. T., and Turnock, B. J. (1992), “A Robust Line Transect Method,” Biometrics, 48, 901–909.CrossRefGoogle Scholar
  9. Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (2001), Introduction to Distance Sampling, Oxford: Oxford University Press.zbMATHGoogle Scholar
  10. Burnham, K. P., Anderson, D. R., and Laake, J. L. (1980), “Estimation of Density From Line Transect Sampling of Biological Populations,” Wildlife Monograph 72, supplement to Journal of Wildlife Management, 44.Google Scholar
  11. Burnham, K. P., Buckland, S. T., Laake, J. L., Borchers, D. L., Marques, T. A., Bishop, J. R. B., and Thomas, L. (2004), “Further Topics in Distance Sampling,” in Advanced Distance Sampling, Estimating Abundance of Biological Populations, eds. S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas, Oxford: Oxford University Press, pp. 307–392.Google Scholar
  12. Chen, S. X. (1999), “Estimation in Independent Observer Line Transect Surveys for Clustered Populations,” Biometrics, 55, 754–759.zbMATHCrossRefGoogle Scholar
  13. Conover, W. J. (1999), Practical Nonparametric Statistics (3rd ed.), New York: Wiley.Google Scholar
  14. Drummer, T. D., and McDonald, L. L. (1987), “Size Bias in Line Transect Sampling,” Biometrics, 43, 13–21.zbMATHCrossRefGoogle Scholar
  15. Drummer, T. D., DeGrange, A. R., Pank, L. L., and McDonald, L. L. (1990), “Adjusting for Group Size Influence in Line Transect Sampling,” Journal of Wildlife Management, 54, 511–514.CrossRefGoogle Scholar
  16. Efron, B., and Tibshirani, R. J. (1993), An Introduction to the Bootstrap, New York: Chapman & Hall.zbMATHGoogle Scholar
  17. Hiby, A. R., and Lovell, P. (1998), “Using Aircraft in Tandem Formation to Estimate the Abundance of Harbour Porpoise,” Biometrics, 54, 1280–1289.zbMATHCrossRefGoogle Scholar
  18. Hiby, L. (1999), “The Objective Identification of Duplicate Sightings in Aerial Survey for Porpoise,” in Marine Mammal Survey and Assessment Methods, eds. G. W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson, Rotterdam: A. A. Balkema, pp. 179–189.Google Scholar
  19. Hiby, L., and Krishna, M. B. (2001), “Line Transect Sampling From a Curved Path,” Biometrics, 57, 727–731.CrossRefMathSciNetGoogle Scholar
  20. Horvitz, D. G., and Thompson, D. J. (1952), “A Generalization of Sampling Without Replacement From a Finite Universe,” Journal of the American Statistical Association, 47, 663–685.zbMATHCrossRefMathSciNetGoogle Scholar
  21. Innes, S., Heide-Jorgensen, M. P., Laake, J. L., Laidre, K. L., Cleator, H. P., Richard, P., and Stewart, R. E. A. (2002), “Surveys of Belugas and Narwhals in the Canadian High Arctic in 1996,” NAMMCO Scientific Publications, 4, 169–190.Google Scholar
  22. Johnson, B. K., Lindzey, F. G., and Guenzel, R. J. (1991), “Use of Aerial Line Transect Surveys to Estimate Pronghorn Populations in Wyoming,” Wildlife Society Bulletin, 19, 315–321.Google Scholar
  23. Laake, J. L. (1999), “Distance Sampling With Independent Observers: Reducing Bias From Heterogeneity by Weakening the Conditional Independence Assumption,” in Marine Mammal Survey and Assessment Methods, eds. G. W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson, Rotterdam: Balkema Press, pp. 137–148.Google Scholar
  24. Laake, J. L., and Borchers, D. L. (2004), “Methods for Incomplete Detection at Distance Zero,” in Advanced Distance Sampling, Estimating Abundance of Biological Populations, eds. S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers, and L. Thomas, Oxford: Oxford University Press, pp. 108–189.Google Scholar
  25. Manly, B. F., McDonald, L. L., and Garner, G. W. (1996), “The Double Count Method With Two Independent Observers,” Journal of Ecological and Environmental Statistics, 1, 170–189.MathSciNetGoogle Scholar
  26. Marques, F. F. C., and Buckland, S. T. (2003), “Incorporating Covariates Into Standard Line Transect Analyses,” Biometrics, 35, 597–604.MathSciNetGoogle Scholar
  27. Patil, G. P., Taillie, C., and Wigley, R. L. (1979a), “Transect Sampling Methods and Their Application to Deep-Sea Red Crab,” in Environmental Biomonitoring, Assessment, Prediction, and Management#x2014;Certain Case Studies and Related Quantitative Issues, eds. J. Cairns, Jr., G. P. Patil, and W. E. Waters, Fairland, MD: International Co-Operative Publishing House, pp. 51–75.Google Scholar
  28. Patil, S. A., Burnham, K. P., and Kovner, J. L. (1979b), “Nonparametric Estimation of Plant Density by the Distance Method,” Biometrics, 35, 597–604.CrossRefGoogle Scholar
  29. Quang, P. X. (1991), “A Nonparametric Approach to Size-Biased Line Transect Sampling,” Biometrics, 47, 269–279.CrossRefMathSciNetGoogle Scholar
  30. Quang, P. X., and Becker, E. F. (1996), “Line Transect Sampling Under Varying Conditions With Application to Aerial Surveys,” Ecology, 77, 1297–1302.CrossRefGoogle Scholar
  31. — (1997), “Combining Line Transect and Double Count Sampling Techniques for Aerial Surveys,” Journal of Agricultural, Biological, and Environmental Statistics, 2, 230–242.CrossRefMathSciNetGoogle Scholar
  32. — (1999), “Aerial Survey Sampling of Contour Transects Using Double-Count and Covariate Data,” in Marine Mammal Survey and Assessment Methods, eds. G. W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. Manly, L. L. McDonald, and D. G. Robertson, Rotterdam: Balkema Press, pp. 87–97.Google Scholar
  33. Quang, P. X., and Lanctot, R. B. (1991), “A Line Transect Model for Aerial Surveys,” Biometrics, 47, 1089–1102.CrossRefGoogle Scholar
  34. R Development Core Team (2008), R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. Available at http://www.R-project.org.Google Scholar
  35. Ramsey, F. L., Wildman, V., and Engbring, J. (1987), “Covariate Adjustments to Effective Area in Variable-Area Wildlife Surveys,” Biometrics, 43, 1–11.CrossRefGoogle Scholar
  36. S-PLUS Version 6.2 (2003), Insightful Corporation, Seattle, WA.Google Scholar
  37. Schwartz, C. C., Miller, S. D., and Haroldson, M. A. (2003), “Grizzly Bear (Ursus arctos),” in Wild Mammals of North America; Biology, Management, and Conservation, eds. G. A. Feldmamer, B. C. Thompson, and J. A. Chapman, Baltimore, MD: John Hopkins University Press, pp. 556–586.Google Scholar

Copyright information

© International Biometric Society 2009

Authors and Affiliations

  1. 1.Alaska Department of Fish and GameDivision of Wildlife ConservationAnchorage
  2. 2.Department of Mathematical SciencesUniversity of AlaskaFairbanks

Personalised recommendations