Raw material
Yellowfin tuna Thunnus albacares roe was obtained from Dongwon F&B Co., Ltd. (Changwon, Korea). Roe was stored at −70 °C in sealed polyethylene bags, and transferred to the laboratory. Frozen roe was partially thawed for 24 h at 4 °C and then cut into small pieces with an approximate thickness of 1.5–3 cm and minced with food grinder (SFM-555SP, Shinil Industrial Co., Ltd., Seoul Korea). Minced roe was frozen at −20 °C until used.
Chemicals
Sodium dodecyl sulfate (SDS) and glycine were purchased from Bio Basic Inc., (Ontario, Canada). Coomassie Brilliant Blue R-250 was purchased from Bio-Rad Laboratories (Hercules, CA, USA). Bovine serum albumin (BSA), β-Mercaptoethanol (β-ME), egg white, glycerol, N,N,N′,N′-tetramethyl ethylene diamine (TEMED), sodium carbonate, sodium hydroxide, sodium L-tatarate, and potassium hydroxide were purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). Copper (II) sulfate pentahydrate was purchased from Yakuri Pure Chemicals Co., Ltd. (Kyoto, Japan). Bromophenol blue and Folin-Ciocalteu’s reagent were purchased Junsei Chemical Co., Ltd. (Tokyo, Japan). All reagents used analytical grade.
Preparation of roe protein concentrates (RPCs)
300 g of frozen minced roe was put into pouch type tea bag (polyethylene polypropylene, 16 × 14.5 cm) for cook-dried process. Freeze-dried concentrate (FDC) as an un-cooked sample was prepared using freeze dryer (PVTFD50A, ilShinbiobase Co., Ltd., Dongducheon, Korea). To prepare the boil-dried concentrate (BDC), sample immerged in five volume of distilled deionized water (DDW) and was boiled for 20 min after sample core temperature was reached to 80 °C. In case of steam-dried concentrate (SDC), sample was steamed for 20 min after sample core temperature was reached to 80 °C. Cooked (boiled or steamed) samples were dried at 70 ± 1 °C for 15 h using an incubator (VS-1203P3V, Vision Scientific, Co., Ltd., Daejeon, Korea). Boil or steam-dried samples were ground to powder using a food grinder and sieved to pass through a 180 mesh to obtained dehydrated RPCs. Grounded powders were referred to as BDC and SDC, respectively. During these processes, cooking process drips such as boil-process drip (BPD) and steam-process drip (SPD) were generated as the 2’nd byproduct. They were packed in plastic bottles and stored at −20 °C for further experiments. A flow chart for the preparation of roe protein concentrates (RPCs) is shown in Fig. 1.
Proximate composition
The proximate composition was determined according to the AOAC method (AOAC 1995). Moisture content was determined by placing accurately weighed 0.2 g of sample into an aluminum pan. Sample was dried in a forced-air convection oven (WFO-700, EYELA, Tokyo, Japan) at 105 °C until a constant weight was reached. The ash content was determined by charring approximately 0.1 g of sample in a ceramic crucible over a hot plate and then heating in a muffle furnace (Thermolyne 10500 furnace, a subsidiary of Sybron Co., Dubuque, IA, USA) at 550 °C until a constant final weight for ash was achieved. The total crude protein (nitrogen x 6.25) content of samples was determined using the semi-micro Kjeldahl method. Protein concentration of cooking process drips was determined by the method of Lowry et al. (1951) using bovine serum albumin as a standard. Total lipid content was determined according to the Soxhlet extraction method. 5 g of sample was extracted with dimethyl ether and performed for 30 min at a drip rate of 10 mL/min. Total lipid content was determined on a gravimetric basis and expressed as percent.
Total amino acid
Total amino acid analysis was conducted according to AOAC method (AOAC 1995). The sample (20 mg) was hydrolyzed with 2 mL of 6 N HCl at 110 °C for 24 h in heating block (HF21, Yamoto Science Co, Tokyo, Japan) and filtered out using vacuum filtrator (ASPIRATOR A-3S, EYELA, Tokyo, Japan). Amino acids were quantified using the amino acid analyzer (Biochrom 30, Biochrom Ltd., Cambridge, United Kingdom) employing sodium citrate buffers (pH 2.2) as step gradients. The data are reported as g of amino acid per 100 g of protein. Asparagine is converted to aspartic acid and glutamine to glutamate during acid hydrolysis, so the reported values for these amino acids (Asp and Glu) represent the sum of the respective amine and amino acid in the proteins.
Mineral
Analysis of iron (Fe), copper (Cu), manganese (Mn), cadmium (Cd), nickel (Ni), lead (Pb), zinc (Zn), chromium (Cr), magnesium (Mg), sodium (Na), phosphorus (P), potassium (K), calcium (Ca), and sulfur (S) contents in sample was carried out using the inductively coupled plasma optical emission spectrophotometry (OPTIMA 4300 DV, Perkin Elmer, Shelton, Conn., USA). Briefly, teflon digestion vessel was washed overnight in a solution of 2 % nitric acid (v/v) prior to use.
Sample was dissolved in 10 mL of 70 % nitric acid. The mixture was heated on the hot plate until digestion was completed. The digested samples were added in 5 mL of 2 % nitric acid and filtered using filter paper (Advantec No. 2, Toyo Roshi Kaisha, Ltd., Tokyo, Japan). Sample was massed up to 100 mL with 2 % nitric acid in a volumetric flask. Sample was run in triplicate. The concentration of mineral was calculated and expressed as mg/100 g sample.
Hunter color
Hunter color properties of samples were equilibrated to room temperature for 2 h prior to the color measurement. Colors were determined using color meter (ZE-2000, Nippon Denshoku Inc., Japan). The colorimeter was calibrated by using a standard plate (L* = 96.82, a* = −0.35, b* = 0.59) supplied by the manufacturer. The values for the CIE (Commission Internationale d’Eclairage of France) color system using tristimulus color values, L* (lightness), a* (redness), and b* (yellowness) were determined. The whiteness was calculated by the following equation:
$$ \mathrm{White}\ \mathrm{index}=100-\sqrt{{\left(100-L\right)}^2+{a}^2+{b}^2} $$
SDS-PAGE
The molecular weight distribution of YTR and RPCs was observed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). It was performed according to the method of Laemmli (1970). Briefly, 10 mg of sample was solubilized in 1 mL of 8 M urea solution containing 2 % β-mercaptoethanol and 2 % sodium dodecyl sulfate (SDS) solution. Protein solution was mixed at 4:1 (v/v) ratio with the SDS-PAGE sample treatment buffer (62.5 mM Tris–HCl (pH 6.8), 2 % SDS (w/v), 10 % glycerol, 2 % β-mercaptoethanol and 0.002 % bromophenol blue) and boiled at 100 °C for 3 min. The sample (20 μg protein) was loaded on the 10 % Mini-PROTEAN® TGX™ Precast gel (Bio-Rad Lab., Inc., Hercules, CA, USA) and subjected to electrophoresis at a constant current of 10 mA per gel using a Mini-PROTEANⓇ tetra cell (Bio-Rad Lab., Inc., Hercules, CA, USA).
Electrophoresed gel was stained in 0.125 % Coomassie brilliant blue R-250 and destained in 25 % methanol and 10 % acetic acid until background was clear. Molecular weight of protein bands was estimated using Precision Plus Protein™ standards (10–250 K, Bio-Rad Lab., Inc., Hercules, CA, USA).
Statistical analysis
All experiments were conducted in triplicates. The average and standard deviation were calculated. Data were analyzed using analysis of variance (ANOVA) procedure by means of the statistical software of SPSS 12.0 KO (SPSS Inc., Chicago, IL, USA). The mean comparison was made using the Duncan’s multiple range test (P < 0.05).