Skip to main content
Log in

Aflatoxin B1-induced hepatorenal impairment in rats via oxidative/inflammatory damage is accompanied by altered purinergic and kynurenine pathways: protective effect of rutin

  • Research
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Purpose

This study investigated the protective effects of rutin against the hepatorenal toxicity of aflatoxin B1 (AFB1) exposure in rats.

Methods

Forty male Wistar rats were sorted into five experimental groups of 8 rats per group: control (corn oil), AFB1 (0.75 mg/kg bwt), AFB1 (1.5 mg/kg bwt), rutin (50 mg/kg bwt), and AFB1 (1.5 mg/kg bwt) + rutin (50 mg/kg bet) per oral for 30 days. Twenty-four hours (24 h) after the last treatment, antioxidant/oxidative stress parameters were assayed. Proinflammatory markers, as well as liver and kidney function tests, were assayed. Others include histology, purinergic, and indoleaminergic pathways.

Results

AFB1 co-treatment significantly (p < 0.05) abated AFB1-induced oxidative stress and inflammatory response when compared with the control group. Impaired hepatorenal function parameters and histological damage in the AFB1 group relative to the control were also attenuated following rutin co-treatment. Moreover, alterations in the purinergic molecules and xanthine oxidase activity following AFB1 exposure relative to the control which was accompanied by an increase in the tryptophan catabolism enzymes in the hepatorenal axis were also modulated by rutin co-treatment.

Conclusion

The outcome of this study revealed that rutin attenuated AFB1-induced hepatorenal toxicity in rats. This outcome is likely due to the inhibition of oxidative stress and proinflammatory response-mediated modulation of purinergic molecules and indoleaminergic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Code availability

Not applicable.

Abbreviations

SOD:

Superoxide dismutase

CAT:

Catalase

LPO:

Lipid peroxidation

NO:

Nitric oxide

MPO:

Myeloperoxidase

GSH:

Glutathione reduced

GSH-Px:

Glutathione peroxidase

IL-6:

Interleukin-6

ATP:

Adenosine triphosphate

AMP:

Adenosine monophosphate

XO:

Xanthine oxidase

IDO:

Indoleamine 2,3-dioxygenase

TDO:

Tryptophan 2,3-dioxygenase

References

  1. Rushing BR, Selim MI. Aflatoxin B1: a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol. 2019;124:81–100.

    Article  CAS  PubMed  Google Scholar 

  2. Yilmaz S, Kaya E, Karaca A, Karatas O. Aflatoxin B1 induced renal and cardiac damage in rats: protective effect of lycopene. Res Vet Sci. 2018;119:266–75.

    Article  Google Scholar 

  3. Limaye A, Yu RC, Chou CC, Liu JR, Cheng KC. Protective and detoxifying effects conferred by dietary selenium and curcumin against AFB1-mediated toxicity in livestock: a review. Toxins. 2018;10:25–38.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang X, Muhammad I, Sun X, Han M, Hamid S, Zhang X. Protective role of curcumin in ameliorating AFB1-induced apoptosis via mitochondrial pathway in liver cells. Mol Biol Rep. 2018;45:881–91.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang NY, Qi M, Zhao L, Zhu MK, Guo J, Liu J, Gu CQ, Rajput S, Krumm C, Qi DS, Sun LH. Curcumin prevents aflatoxin B (1) hepatoxicity by inhibition of cytochrome P450 isozymes in chick liver. Toxins. 2016;8:24–33.

    Article  Google Scholar 

  6. Massey TE, Smith GB, Tam AS. Mechanisms of aflatoxin B1 lung tumorigenesis. Exp Lung Res. 2000;26:673–83.

    Article  CAS  PubMed  Google Scholar 

  7. Autrup H, Jorgensen EC, Jensen O. Aflatoxin B1 induced lacI mutation in liver and kidney of transgenic mice C57BL/6N: effect of phorone. Mutagenesis. 1996;11:69–73.

    Article  CAS  PubMed  Google Scholar 

  8. Abdel-Daim MM, Abdeen A, Jalouli M, Abdelkader A, Megahed A, Alkahtan A, Almeer R, Alhoshani NM, Al-Johani NS, Alkahtani S, Aleya L. Fucoidan supplementation modulates hepato-renal oxidative stress and DNA damage induced by aflatoxin B1 intoxication in rats. Sci Tot Environ. 2021;768:144781.

    Article  CAS  Google Scholar 

  9. Demirkapi EN, Ince S, Demirel HH, Arslan-Acaroz D, Acaroz U. Polydatin reduces aflatoxin-B1 induced oxidative stress, DNA damage, and inflammatory cytokine levels in mice. Environ Sci Pollut Res. 2023;30(27):70842–53.

    Article  CAS  Google Scholar 

  10. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48.

    Article  CAS  PubMed  Google Scholar 

  11. Badawy AA. Tryptophan availability for kynurenine pathway metabolism across the life span: control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology. 2017;112:248–63.

    Article  CAS  PubMed  Google Scholar 

  12. da Silva Dias IC, Carabelli B, Ishii DK, de Morais H, de Carvalho MC, De Souza LER, Zanata SM, Brandão ML, Cunha TM, Ferraz AC, Cunha JM, Zanoveli JM. Indoleamine-2, 3-dioxygenase/kynurenine pathway as a potential pharmacological target to treat depression associated with diabetes. Mol Neurobiol. 2016;53(10):6997–7009.

    Article  PubMed  Google Scholar 

  13. Ebokaiwe AP, Obasi DO, Njoku RCC, Osawe S, Olusanya O, Kalu WO. Cyclophosphamide instigated hepatic-renal oxidative/inflammatory stress aggravates immunosuppressive indoleamine 2, 3-dioxygenase in male rats: abatement by quercetin. Toxicology. 2021;464:153027.

    Article  CAS  PubMed  Google Scholar 

  14. Dolšak A, Gobec S, Sova M. Indoleamine and tryptophan 2, 3-dioxygenases as important future therapeutic targets. Pharmacol Ther. 2021;221:107746.

    Article  PubMed  Google Scholar 

  15. Rahmani S, Naraki K, Roohbakhsh A, Hayes AW, Karimi G. The protective effects of rutin on the liver, kidneys, and heart by counteracting organ toxicity caused by synthetic and natural compounds. Food Sci Nutr. 2023;11:39–56.

    Article  CAS  PubMed  Google Scholar 

  16. Ebokaiwe AP, Obasi DO, Uket O, Onyemuche T. Rutin co-treatment prevented cognitive impairment/depression-like behavior and decreased IDO activation following 35 days of ethanol administration in male Wistar rats. Alcohol. 2023;106:22–9.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Liu F, Zhou X, Liu M, Zang H, Liu X, Shan A, Feng X. Alleviation of oral exposure to aflatoxin B1-induced renal dysfunction, oxidative stress, and cell apoptosis in mice kidney by curcumin. Antioxidants. 2022;11(6):1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Misra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5.

    Article  CAS  PubMed  Google Scholar 

  19. Clairborne A. Catalase activity. In: Greewald AR, editor. Handbook of methods for oxygen radical research. Boca Raton (FL): CRC Press, Boca Rocha; 1995. p. 237–42.

    Google Scholar 

  20. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–90.

    Article  CAS  PubMed  Google Scholar 

  21. Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR. Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3,4 bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11:151–69.

    Article  CAS  PubMed  Google Scholar 

  22. Ebokaiwe AP, Ramesh P, Mathur PP, Farombi EO. Transient effect of single dose exposure of Nigerian Bonny-light crude oil on testicular steroidogenesis in Wistar rats is accompanied by oxidative stress. Drug Chem Toxicol. 2015;38(4):428–35.

    Article  CAS  PubMed  Google Scholar 

  23. Rosemberg DB, Rico EP, Langoni AS, Spinelli JT, Pereira TC, Dias RD, Souza DO, Bonan CD, Bogo MR. NTPDase family in zebrafish: nucleotide hydrolysis, molecular identification and gene expression profiles in brain, liver and heart. Comp Biochem Physiol B Biochem Mol Biol. 2010;155:230–40.

    Article  PubMed  Google Scholar 

  24. Canzian J, Fontana BD, Quadros VA, Rosemberg DB. Conspecific alarm substance differently alters group behavior of zebrafish populations: putative involvement of cholinergic and purinergic signaling in anxiety- and fear-like responses. Behav Brain Res. 2017;320:255–63.

    Article  PubMed  Google Scholar 

  25. Chan KM, Delfert D, Junger KD. A direct colorimetric assay for Ca2+- stimulated ATPase activity. Anal Biochem. 1986;157:375–80.

    Article  CAS  PubMed  Google Scholar 

  26. Prajda N, Weber G. Malignant transformation-linked imbalance: decreased xanthine oxidase activity in hepatomas. FEBS Lett. 1975;59:245–9.

    Article  CAS  PubMed  Google Scholar 

  27. Eiserich JP, Hristova M, Cross CE, et al. Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature. 1998;391(6665):393–7.

    Article  CAS  PubMed  Google Scholar 

  28. Moshage H, Kok B, Huizenga JR, Jansen PL. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem. 1995;41(6):892–6.

    Article  CAS  PubMed  Google Scholar 

  29. Reitmann S, Frankel S. Colourimetric method for the determination of serum transaminase activity. Am J Clin Pathol. 1957;28:56–68.

    Article  Google Scholar 

  30. Recommendation of German Society of Clinical Chemistry (Rec. GSCC). Optimised standard colorimetric methods. J Clinic Chem Clinic Biochem. 1972;10:182–183.

  31. Bancroft JD, Gamble M. Theory and practice of histology techniques, 6th edn. London: Churchill Livingstone Elsevier. 2008.

  32. Ebokaiwe AP, Odobi RU, Ogunwa TH, Kikiowo B, Olasiende O. Quercetin attenuates cyclophosphamide induced‐immunosuppressive indoleamine 2,3‐dioxygenase in the hippocampus and cerebral cortex of male Wister rats. J Biochem Mol Toxicol. 2022;e23179.

  33. Kudo Y, Boyd CAR. Human placental indoleamine 2,3 dioxygenase: cellular localization and characterization of an enzyme preventing fetal rejection. Biochim Biophys Acta. 2000;1500:119–24.

    Article  CAS  PubMed  Google Scholar 

  34. Salter M, Hazelwood R, Pogson C, Iyer R, Madge DJ. The effect of a novel and selective inhibitor of tryptophan 2,3-dioxygenase on tryptophan and serotonin metabolism in the rat. Biochem Pharmacol. 1995;49:1435–42.

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Xing L, Zhang M, Wang J, Zheng N. The toxic effects of aflatoxin B1 and aflatoxin M1 on kidney through regulating L-proline and downstream apoptosis. Biomed Res Int. 2018. https://doi.org/10.1155/2018/9074861.

    Article  PubMed  PubMed Central  Google Scholar 

  36. de León-Martínez LD, Díaz-Barriga F, Barbier O, Ortíz DLG, Ortega-Romero M, Pérez-Vázquez F, Flores-Ramírez R. Evaluation of emerging biomarkers of renal damage and exposure to aflatoxin-B 1 in Mexican indigenous women: a pilot study. Environ Sci Pollut Res. 2019;26:12205–16.

    Article  Google Scholar 

  37. Xu Q, Shi W, Lv P, Meng W, Mao G, Gong C, Chen Y, Wei Y, He X, Zhao J, Han H, Yilmaz S, Kaya E, Karaca A, Karatas O. Aflatoxin B1 induced renal and cardiac damage in rats: protective effect of lycopene. Res Vet Sci. 2018;119:266–75.

    Google Scholar 

  38. Abdel-Daim M, Dawood MAO, AlKahtane AA, Abdeen A, Abdel-Latif HMR, Aleissa MS, Alkahtani S, Abd Eldaim MA, Ahmed AM, Bungǎu SG, Almutairi B, BinJumah M, Alkahtane AA, Alyousif MS, Abdel-Daim MM. Fucoidan ameliorates oxidative stress, inflammation, DNA damage, and hepatorenal injuries in diabetic rats intoxicated with aflatoxin B1. Oxid Med Cell Longev. 2020. https://doi.org/10.1155/2020/9316751.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marin DE, Taranu I. Overview on aflatoxins and oxidative stress. Toxin Rev. 2012;31:32–43.

    Article  CAS  Google Scholar 

  40. Aleissa MS, Alkahtani S, Abd Eldaim MA, Ahmed AM, Bungǎu SG, Almutairi B, BinJumah M, Alkahtane AA, Alyousif MS, Abdel-Daim MM. Fucoidan ameliorates oxidative stress, inflammation, DNA damage, and hepatorenal injuries in diabetic rats intoxicated with aflatoxin B1. Oxid Med Cell Longev. 2020. https://doi.org/10.1155/2020/9316751.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bbosa GS, Kitya D, Odda J, Ogwal-Okeng J. Aflatoxins metabolism. Health (Irvine Calif). 2013;05:14–34.

    Google Scholar 

  42. Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Kucukkurt I, Demirel HH, Zhu K. The ameliorative effects of boron against acrylamide-induced oxidative stress, inflammatory response, and metabolic changes in rats. Food Chem Toxicol. 2018;118:745–52.

    Article  CAS  PubMed  Google Scholar 

  43. Acaroz U, Ince S, Arslan-Acaroz D, Gurler Z, Demirel HH, Kucukkurt I, Zhu K. Bisphenol-A induced oxidative stress, inflammatory gene expression, and metabolic and histopathological changes in male Wistar albino rats: protective role of boron. Toxicol Res. 2019;8(2):262–9.

    Article  CAS  Google Scholar 

  44. Eraslan G, Sarıca ZS, Bayram LÇ, Tekeli MY, Kanbur M, Karabacak M. The effects of diosmin on aflatoxin-induced liver and kidney damage. Environ Sci Pollut Res. 2017;24:27931–41.

    Article  CAS  Google Scholar 

  45. Abdeen A, Abdelkader A, Elgazzar D, Aboubakr M, Abdulah OA, Shoghy K, AbdelDaim M, El-Serehy HA, Najda A, El-Mleeh A. Coenzyme Q10 supplementation mitigates piroxicam-induced oxidative injury and apoptotic pathways in the stomach, liver, and kidney. Biomed Pharmacother. 2020;130:110627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gowda NKS, Ledoux DR. Use of antioxidants in amelioration of mycotoxin toxicity: a review. Anim Nutr Feed Technol. 2008;8:271–2.

    Google Scholar 

  47. Amaral SS, Oliveira AG, Marques PE, Quintão JLD, Pires DA, Resende RR, Sousa BR, Melgaço JG, Pinto MA, Russo RC, Gomes AKC, Andrade LM, Zanin RF, Pereira RVS, Bonorino C, Soriani M, Lima CX, Cara DC, Teixeira MM, Leite MF, Menezes GB. Altered responsiveness to extracellular ATP enhances acetaminophen hepatotoxicity. Cell Commun Signal. 2013;11(10):2–14.

    Google Scholar 

  48. Franke H, Illes P. Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharm Ther. 2006;109:297–324.

    Article  CAS  Google Scholar 

  49. Gualdoni GS, Jacobo PV, Sobarzo CM, Pérez CV, Matzkin ME, Höcht C, Frungieri MB, Hill M, Anegon I, Lustig L, Guazzone VA. Role of indoleamine 2,3-dioxygenase in testicular immune-privilege. Sci Rep. 2019;9:15919.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Stone TW. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev. 1993;45:309–79.

    CAS  PubMed  Google Scholar 

  51. Pawlak D, Tankiewicz A, Buczko W. Kynurenine and its metabolites in the rat with experimental renal insufficiency. J Physiol Pharmacol. 2001;52(4):755–66.

    CAS  PubMed  Google Scholar 

  52. Kwon M, Koc S-K, Janga M, Kim G-H, Ryoo I-J, Son S, Ryu HW, Oh S-R, Leed W-K, Kim BY, Jang J-H, Ahn JS. Inhibitory effects of flavonoids isolated from Sophora flavescens on indoleamine 2,3-dioxygenase 1 activity. J Enzyme Inhib Med Chem. 2019;34(1):1481–14788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the AE-FUNAI Institutional Based research grant (FUNAI/FS/B1/005) awarded to Azubuike P. Ebokaiwe.

Author information

Authors and Affiliations

Authors

Contributions

NO and APE designed the experiment. DOA, ECM, and JNO experimented. APE did the statistical analysis. APE and NO wrote the draft manuscript, and all authors approved the manuscript.

Corresponding author

Correspondence to Azubuike Peter Ebokaiwe.

Ethics declarations

Ethics approval

The experiment performed in rodents followed standard procedures used in Alex Ekwueme Federal University with approval number AEFUNAI Vol 01/18/23 and according to guidelines in strict compliance with the “Principle of Laboratory Animal Care” (NIH Publication No. 85–23).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okoro, N., Alilonu, D.O., Eze, M.C. et al. Aflatoxin B1-induced hepatorenal impairment in rats via oxidative/inflammatory damage is accompanied by altered purinergic and kynurenine pathways: protective effect of rutin. Nutrire 49, 23 (2024). https://doi.org/10.1186/s41110-024-00265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-024-00265-8

Keywords

Navigation