Skip to main content
Log in

Bacteriocin-mediated food coating: a strategic way to prevent food spoiling and food poisoning bacteria

  • Review
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Food degradation is the result of a series of modifications that make the food not suitable for consumption. It is a complicated process that involves biochemical activity of microbial chemical processes, which finally dominate ecological drivers. One of the most common ways of the process is microbial spoilage which can also form in the formation of biofilm and food degradation associated with biofilm formation. Enzymes are involved in practically every stage of biofilm detachment and destruction. Therefore, several studies have discovered that using enzymes as a therapeutic strategy can give a successful therapeutic solution for problems related to biofilm in the food industry. Live bacteriocin strains have also been shown to be effective at halting microbial development. Most fermented foods naturally include lactic acid bacteria, which are also important bacteriocin makers. Bacteriocins made by lactic acid bacteria are often referred to as endogenous antibiotics due to their ability to inhibit the growth of a number of harmful pathogens. The objective of this review is to understand and discuss strategies to prevent the food spoilage process and its preservation with the incorporation of bacteriocin into the packaging films to prevent biofilm formation on the food materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Nychas G-JE, Panagou E. Microbiological spoilage of foods and beverages. In Food and Beverage Stability and Shelf Life (pp. 3–28). Elsevier 2011. https://doi.org/10.1533/9780857092540.1.3

  2. Van Wey AS, Cookson AL, Roy NC, McNabb WC, Soboleva TK, Shorten PR. Bacterial biofilms associated with food particles in the human large bowel. Mol Nutr Food Res. 2011;55(7):969–78. https://doi.org/10.1002/mnfr.201000589.

    Article  CAS  PubMed  Google Scholar 

  3. Majumdar A. Chapter 5—food degradation and foodborne diseases: a microbial approach. 40 (n.d.).

  4. Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard J-C, Naïtali M, Briandet R. Biofilm-associated persistence of food-borne pathogens. Food Microbiol. 2015;45:167–78. https://doi.org/10.1016/j.fm.2014.04.015.

    Article  CAS  PubMed  Google Scholar 

  5. Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. Biofilms, the customized microniche. J Bacteriol. 1994;176(8):2137–42. https://doi.org/10.1128/jb.176.8.2137-2142.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Petruzzi L, Campaniello D, Corbo MR, Speranza B, Altieri C, Sinigaglia M, Bevilacqua A. Wine microbiology and predictive microbiology: a short overview on application, and perspectives. Microorganisms. 2022;10(2):421. https://doi.org/10.3390/microorganisms10020421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nahar S, Mizan MdFR, Ha AJ, Ha S-D. Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry: enzyme-based biofilm prevention…. Compr Rev Food Sci Food Saf. 2018;17(6):1484–502. https://doi.org/10.1111/1541-4337.12382.

    Article  PubMed  Google Scholar 

  8. Blackburn C de W. Managing microbial food spoilage: An overview. In Food Spoilage Microorganisms (pp. 147–170). Elsevier 2006. https://doi.org/10.1533/9781845691417.2.147

  9. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van Giessen der J, Kruse H. Food-borne diseases—the challenges of 20years ago still persist while new ones continue to emerge. Int J Food Microbiol. 2010;139:S3–15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gram L, Ravn L, Rasch M, Bruhn JB, Christensen AB, Givskov M. Food spoilage—Interactions between food spoilage bacteria. Int J Food Microbiol. 2002;78(1–2):79–97. https://doi.org/10.1016/S0168-1605(02)00233-7.

    Article  PubMed  Google Scholar 

  11. Cousin MA. Presence and activity of psychrotrophic microorganisms in milk and dairy products: a review1. J Food Prot. 1982;45(2):172–207. https://doi.org/10.4315/0362-028X-45.2.172.

    Article  CAS  PubMed  Google Scholar 

  12. Cogan TM, Beresford TP. Microbiology of hard cheese. In R. K. Robinson (Ed.), Dairy Microbiology Handbook (pp. 515–560). John Wiley & Sons, Inc. 2005. https://doi.org/10.1002/0471723959.ch11

  13. El-Sayed MH, El-Aziz ZKA, Elbadawy HH. Evaluation the Microbial Spoilage of Atlantic Salmon (Salmo salar) Fillets during the Packaging Processes and Its Control by Preservatives (n.d.).

  14. Borch E, Kant-Muermans M-L, Blixt Y. Bacterial spoilage of meat and cured meat products. Int J Food Microbiol. 1996;33(1):103–20. https://doi.org/10.1016/0168-1605(96)01135-X.

    Article  CAS  PubMed  Google Scholar 

  15. Wiley RC, Yildiz F. Introduction to minimally processed refrigerated (MPR) fruits and vegetables. In F. Yildiz & R. C. Wiley (Eds.), Minimally Processed Refrigerated Fruits and Vegetables (pp. 3–15). Springer US 2017. https://doi.org/10.1007/978-1-4939-7018-6_1

  16. Loureiro V. Spoilage yeasts in the wine industry. Int J Food Microbiol. 2003;86(1–2):23–50. https://doi.org/10.1016/S0168-1605(03)00246-0.

    Article  CAS  PubMed  Google Scholar 

  17. Kraybil HF. Part II. Carcinogenesis associated with foods, food additives, food degradation products, and related dietary factors. Clin Pharm Ther. 1963;4(1):73–87. https://doi.org/10.1002/cpt19634173.

    Article  Google Scholar 

  18. Labuza TP. Application of chemical kinetics to deterioration of foods. J Chem Educ. 1984;61(4):348. https://doi.org/10.1021/ed061p348.

    Article  CAS  Google Scholar 

  19. Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186:407–21. https://doi.org/10.1016/0076-6879(90)86134-h.

    Article  CAS  PubMed  Google Scholar 

  20. Velasco J, Dobarganes C, Márquez-Ruiz G. Oxidative rancidity in foods and food quality. In Chemical Deterioration and Physical Instability of Food and Beverages (pp. 3–32). Elsevier 2010. https://doi.org/10.1533/9781845699260.1.3

  21. Kolanowski W, Jaworska D, Weißbrodt J. Importance of instrumental and sensory analysis in the assessment of oxidative deterioration of omega-3 long-chain polyunsaturated fatty acid-rich foods. J Sci Food Agric. 2007;87(2):181–91. https://doi.org/10.1002/jsfa.2733.

    Article  CAS  Google Scholar 

  22. Pingret D, Fabiano-Tixier A-S, Chemat F. Degradation during application of ultrasound in food processing: a review. Food Control. 2013;31(2):593–606. https://doi.org/10.1016/j.foodcont.2012.11.039.

    Article  Google Scholar 

  23. McClements DJ. Advances in the application of ultrasound in food analysis and processing. Trends Food Sci Technol. 1995;6(9):293–9. https://doi.org/10.1016/S0924-2244(00)89139-6.

    Article  CAS  Google Scholar 

  24. Vercet A, Burgos J, López-Buesa P. Manothermosonication of foods and food-resembling systems: effect on nutrient content and nonenzymatic browning. J Agric Food Chem. 2001;49(1):483–9. https://doi.org/10.1021/jf000438i.

    Article  CAS  PubMed  Google Scholar 

  25. Eh AL-S, Teoh S-G. Novel modified ultrasonication technique for the extraction of lycopene from tomatoes. Ultrason Sonochem. 2012;19(1):151–9. https://doi.org/10.1016/j.ultsonch.2011.05.019.

    Article  CAS  PubMed  Google Scholar 

  26. Dainty RH, Mackey BM. The relationship between the phenotypic properties of bacteria from chill-stored meat and spoilage processes. J Appl Bacteriol. 1992;73:103s–14s. https://doi.org/10.1111/j.1365-2672.1992.tb03630.x.

    Article  Google Scholar 

  27. Broda DM, DeLacy KM, Bell RG, Penney N. Association of psychrotrophic Clostridium spp. With deep tissue spoilage of chilled vacuum-packed lamb. Int J Food Microbiol. 1996;29(2–3):371–8. https://doi.org/10.1016/0168-1605(95)00071-2.

    Article  CAS  PubMed  Google Scholar 

  28. Dalgaard P, Gram L, Huss HH. Spoilage and shelf-life of cod fillets packed in vacuum or modified atmospheres. Int J Food Microbiol. 1993;19(4):283–94. https://doi.org/10.1016/0168-1605(93)90020-H.

    Article  CAS  PubMed  Google Scholar 

  29. Mattila-Sandholm T, Wirtanen G. Biofilm formation in the industry: a review. Food Rev Intl. 1992;8(4):573–603. https://doi.org/10.1080/87559129209540953.

    Article  CAS  Google Scholar 

  30. Abadias M, Usall J, Anguera M, Solsona C, Viñas I. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. Int J Food Microbiol. 2008;123(1–2):121–9. https://doi.org/10.1016/j.ijfoodmicro.2007.12.013.

    Article  CAS  PubMed  Google Scholar 

  31. Hanuš O, Vegricht J, Frelich J, Macek A, Bjelka M, Louda F, Janů L. Analysis of raw cow milk quality according to free fatty acid contents in the Czech Republic. Czech J Anim Sci. 2008;53(No. 1):17–30. https://doi.org/10.17221/2717-CJAS.

    Article  Google Scholar 

  32. Laws AP, Marshall VM. The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria. Int Dairy J. 2001;11(9):709–21. https://doi.org/10.1016/S0958-6946(01)00115-7.

    Article  CAS  Google Scholar 

  33. Gerez CL, Torino MI, Rollán G, Font de Valdez G. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control. 2009;20(2):144–8. https://doi.org/10.1016/j.foodcont.2008.03.005.

    Article  CAS  Google Scholar 

  34. Cerveny J, Meyer JD, Hall PA. Microbiological spoilage of meat and poultry products. In W. H. Sperber & M. P. Doyle (Eds.), Compendium of the Microbiological Spoilage of Foods and Beverages (pp. 69–86). Springer New York. 2009. https://doi.org/10.1007/978-1-4419-0826-1_3

  35. Nychas G-JE, Skandamis PN, Tassou CC, Koutsoumanis KP. Meat spoilage during distribution. Meat Sci. 2008;78(1–2):77–89. https://doi.org/10.1016/j.meatsci.2007.06.020.

    Article  PubMed  Google Scholar 

  36. da Costa RJ, Voloski FLS, Mondadori RG, Duval EH, Fiorentini ÂM. Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. J Food Qual. 2019;2019:1–12. https://doi.org/10.1155/2019/4726510.

    Article  CAS  Google Scholar 

  37. Wu FM, Doyle MP, Beuchat LR, Wells JG, Mintz ED, Swaminathan B. Fate of Shigella sonnei on parsley and methods of disinfection. J Food Prot. 2000;63(5):568–72. https://doi.org/10.4315/0362-028X-63.5.568.

    Article  CAS  PubMed  Google Scholar 

  38. Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, Darb Emamie A, Ghanavati R, Kakanj M. Bacteriocins: properties and potential use as antimicrobials. J Clin Lab Anal. 2022;36(1):e24093. https://doi.org/10.1002/jcla.24093.

    Article  CAS  PubMed  Google Scholar 

  39. García M, Forbe T, Gonzalez E. Potential applications of nanotechnology in the agro-food sector. Ciênc Tecnol Aliment. 2010;30(3):573–81. https://doi.org/10.1590/S0101-20612010000300002.

    Article  Google Scholar 

  40. Loss CR, Hotchkiss JH. Effect of dissolved carbon dioxide on thermal inactivation of microorganisms in milk. J Food Prot. 2002;65(12):1924–9. https://doi.org/10.4315/0362-028X-65.12.1924.

    Article  CAS  PubMed  Google Scholar 

  41. Meireles A, Borges A, Giaouris E, Simões M. The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res Int. 2016;86:140–6. https://doi.org/10.1016/j.foodres.2016.06.006.

    Article  CAS  Google Scholar 

  42. Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A. New weapons to fight old enemies: novel strategies for the (Bio)control of bacterial biofilms in the food industry. Front Microbiol. 2016;7. https://doi.org/10.3389/fmicb.2016.01641

  43. Phillips CA. Bacterial biofilms in food processing environments: A review of recent developments in chemical and biological control. Int J Food Sci Technol. 2016;51(8):1731–43. https://doi.org/10.1111/ijfs.13159.

    Article  CAS  Google Scholar 

  44. Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and Staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Res Int. 2014;2014:1–9. https://doi.org/10.1155/2014/827965.

    Article  Google Scholar 

  45. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 2005;93(3):467–74. https://doi.org/10.1016/j.foodchem.2004.10.024.

    Article  CAS  Google Scholar 

  46. Oh D-H, Marshall DL. Monolaurin and acetic acid inactivation of Listeria monocytogenes attached to stainless steel. J Food Prot. 1996;59(3):249–52. https://doi.org/10.4315/0362-028X-59.3.249.

    Article  CAS  PubMed  Google Scholar 

  47. Ashraf MA, Ullah S, Ahmad I, Qureshi AK, Balkhair KS, Abdur Rehman M. Green biocides, a promising technology: current and future applications to industry and industrial processes: Green biocides, a promising technology. J Sci Food Agric. 2014;94(3):388–403. https://doi.org/10.1002/jsfa.6371.

    Article  CAS  PubMed  Google Scholar 

  48. Simões M, Simões LC, Vieira MJ. A review of current and emergent biofilm control strategies. LWT Food Sci Technol. 2010;43(4):573–83. https://doi.org/10.1016/j.lwt.2009.12.008.

    Article  CAS  Google Scholar 

  49. Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci. 2007;104(27):11197–202. https://doi.org/10.1073/pnas.0704624104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pola CC, Medeiros EAA, Pereira OL, Souza VGL, Otoni CG, Camilloto GP, Soares NFF. Cellulose acetate active films incorporated with oregano ( Origanum vulgare ) essential oil and organophilic montmorillonite clay control the growth of phytopathogenic fungi. Food Packag Shelf Life. 2016;9:69–78. https://doi.org/10.1016/j.fpsl.2016.07.001.

    Article  Google Scholar 

  51. Prasad P, Prasad P, Kochhar A. Active packaging in food industry: a review. IOSR J Environ Sci Toxicol Food Technol. 2014;8(5):01–7. https://doi.org/10.9790/2402-08530107.

    Article  Google Scholar 

  52. Otoni CG, Medeiros EAA, Junior JCB. Use of Allyl Isothiocyanatecontaining Sachets to reduce Aspergillus flavus sporulation in peanuts. Packag Technol Sci. 2014.

  53. Camilloto GP, de Fátima Ferreira Soares N, dos Santos Pires AC, de Paula FS. Preservation of sliced ham through triclosan active film. Packag Technol Sci. 2009;22(8):471–7. https://doi.org/10.1002/pts.871.

    Article  CAS  Google Scholar 

  54. Trinetta V, Floros JD, Cutter CN. SAKACIN A-containing pullulan film: an active packaging system to control epidemic clones of listeria monocytogenes in ready-to-eat foods. (n.d.).

  55. Pires S. Development and evaluation of active packaging for sliced mozzarella preservation. Packag Technol. 2008.

  56. Appendini P, Hotchkiss JH. Review of antimicrobial food packaging. Innov Food Sci Emerg Technol. 2002;3(2):113–26. https://doi.org/10.1016/S1466-8564(02)00012-7.

    Article  CAS  Google Scholar 

  57. Deegan LH, Cotter PD, Hill C, Ross P. Bacteriocins: biological tools for bio-preservation and shelf-life extension. Int Dairy J. 2006.

  58. Santos JCP, Sousa RCS, Otoni CG, Moraes ARF, Souza VGL, Medeiros EAA, Espitia PJP, Pires ACS, Coimbra JSR, Soares NFF. Nisin and other antimicrobial peptides: production, mechanisms of action, and application in active food packaging. Innov Food Sci Emerg Technol. 2018;48:179–94. https://doi.org/10.1016/j.ifset.2018.06.008.

    Article  CAS  Google Scholar 

  59. Zacharof MP, Lovitt RW. Bacteriocins produced by lactic acid bacteria a review article. APCBEE Proc. 2012;2:50–6. https://doi.org/10.1016/j.apcbee.2012.06.010.

    Article  CAS  Google Scholar 

  60. Cleveland J, Montville TJ, Nes IF, Chikindas ML. Bacteriocins: Safe, natural antimicrobials for food preservation. Int J Food Microbiol. 2001;71(1):1–20. https://doi.org/10.1016/S0168-1605(01)00560-8.

    Article  CAS  PubMed  Google Scholar 

  61. Al-Mahrous MM, Upton M. Discovery and development of lantibiotics; antimicrobial agents that have significant potential for medical application. Expert Opin Drug Discov. 2011;6(2):155–70. https://doi.org/10.1517/17460441.2011.545387.

    Article  CAS  PubMed  Google Scholar 

  62. Jamuna M, Babusha ST, Jeevaratnam K. Inhibitory efficacy of nisin and bacteriocins from Lactobacillus isolates against food spoilage and pathogenic organisms in model and food systems. Food Microbiol. 2005;22(5):449–54. https://doi.org/10.1016/j.fm.2004.11.008.

    Article  CAS  Google Scholar 

  63. Gumienna M, Górna B. Antimicrobial food packaging with biodegradable polymers and bacteriocins. Molecules. 2021;26(12):3735. https://doi.org/10.3390/molecules26123735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guerrieri E, de Niederhäusern S, Messi P, Sabia C, Iseppi R, Anacarso I, Bondi M. Use of lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes in a small-scale model. Food Control. 2009;20(9):861–5. https://doi.org/10.1016/j.foodcont.2008.11.001.

    Article  CAS  Google Scholar 

  65. Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3(10):777–88. https://doi.org/10.1038/nrmicro1273.

    Article  CAS  PubMed  Google Scholar 

  66. Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact. 2014;13(S1):S3. https://doi.org/10.1186/1475-2859-13-S1-S3.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mokoena MP. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules. 2017;22(8):1255. https://doi.org/10.3390/molecules22081255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU. Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents. 2017;49(1):1–11. https://doi.org/10.1016/j.ijantimicag.2016.08.016.

    Article  CAS  PubMed  Google Scholar 

  69. Barbosa AAT, Mantovani HC, Jain S. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit Rev Biotechnol. 2017;37(7):852–64. https://doi.org/10.1080/07388551.2016.1262323.

    Article  CAS  PubMed  Google Scholar 

  70. Duraisamy S, Balakrishnan S, Ranjith S, Husain F, Sathyan A, Peter AS, Prahalathan C, Kumarasamy A. Bacteriocin—a potential antimicrobial peptide towards disrupting and preventing biofilm formation in the clinical and environmental locales. Environ Sci Pollut Res. 2020;27(36):44922–36. https://doi.org/10.1007/s11356-020-10989-5.

    Article  CAS  Google Scholar 

  71. Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog. 2019;128:171–7. https://doi.org/10.1016/j.micpath.2019.01.002.

    Article  CAS  PubMed  Google Scholar 

  72. Meindl K, Schmiederer T, Schneider K, Reicke A, Butz D, Keller S, Gühring H, Vértesy L, Wink J, Hoffmann H, Brönstrup M, Sheldrick GM, Süssmuth RD. Labyrinthopeptins: a new class of carbacyclic lantibiotics. Angew Chem Int Ed. 2010;49(6):1151–4. https://doi.org/10.1002/anie.200905773.

    Article  CAS  Google Scholar 

  73. Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, Vederas JC. Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: formation and reduction of α-thio-α-amino acid derivatives. Biochemistry. 2004;43(12):3385–95. https://doi.org/10.1021/bi0359527.

    Article  CAS  PubMed  Google Scholar 

  74. Henderson JT, Chopko TAL, van Wassenaart PD. Purification and Primary Structure of Pediocin PA-1 Produced by Pediococcus acidilactici PAC-1 .O. (n.d.).

  75. Abee T, Klaenhammer TR, Letellier L. Kinetic studies of the action of lactacin F, a bacteriocin produced by Lactobacillus johnsonii that forms poration complexes in the cytoplasmic membrane. Appl Environ Microbiol. 1994;60(3):1006–13. https://doi.org/10.1128/aem.60.3.1006-1013.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Martin-Visscher LA, van Belkum MJ, Garneau-Tsodikova S, Whittal RM, Zheng J, McMullen LM, Vederas JC. Isolation and characterization of carnocyclin A, a novel circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. Appl Environ Microbiol. 2008;74(15):4756–63. https://doi.org/10.1128/AEM.00817-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ovchinnikov KV, Kristiansen PE, Straume D, Jensen MS, Aleksandrzak-Piekarczyk T, Nes IF, Diep DB. The leaderless Bacteriocin Enterocin K1 is highly potent against enterococcus faecium: a study on structure, target spectrum and receptor. Front Microbiol. 2017;8:774. https://doi.org/10.3389/fmicb.2017.00774.

    Article  PubMed  PubMed Central  Google Scholar 

  78. de Lorenzo V, Pugsley AP. Microcin E492, a low-molecular-weight peptide antibiotic which causes depolarization of the Escherichia coli cytoplasmic membrane. Antimicrob Agents Chemother. 1985;27(4):666–9. https://doi.org/10.1128/AAC.27.4.666.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Radler EMCF. Caseicin, a Bacteriocin from LactobacUlus casei. 1993;38.

  80. Sun Z, Wang X, Zhang X, Wu H, Zou Y, Li P, Sun C, Xu W, Liu F, Wang D. Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. J Ind Microbiol Biotechnol. 2018;45(3):213–27. https://doi.org/10.1007/s10295-018-2008-6.

    Article  CAS  PubMed  Google Scholar 

  81. Jenssen H, Hamill P, Hancock REW. Peptide Antimicrobial Agents. Clin Microbiol Rev. 2006;19(3):491–511. https://doi.org/10.1128/CMR.00056-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gillor O, Etzion A, Riley MA. The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol. 2008;81(4):591–606. https://doi.org/10.1007/s00253-008-1726-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl H-G. Specific binding of nisin to the peptidoglycan precursor lipid II Combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem. 2001;276(3):1772–9. https://doi.org/10.1074/jbc.M006770200.

    Article  CAS  PubMed  Google Scholar 

  84. Kirtonia K, Salauddin M, Bharadwaj KK, Pati S, Dey A, Shariati MA, Tilak VK, Kuznetsova E, Sarkar T. Bacteriocin: a new strategic antibiofilm agent in food industries. Biocatal Agric Biotechnol. 2021;36:102141. https://doi.org/10.1016/j.bcab.2021.102141.

    Article  CAS  Google Scholar 

  85. Chopra L, Singh G, Kumar Jena K, Sahoo DK. Sonorensin: a new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci Rep. 2015;5(1):13412. https://doi.org/10.1038/srep13412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Mauriello G, Ercolini D, La Storia A, Casaburi A, Villani F. Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. J Appl Microbiol. 2004;97(2):314–22. https://doi.org/10.1111/j.1365-2672.2004.02299.x.

    Article  CAS  PubMed  Google Scholar 

  87. Nostro A, Scaffaro R, Ginestra G, D’Arrigo M, Botta L, Marino A, Bisignano G. Control of biofilm formation by poly-ethylene-co-vinyl acetate films incorporating nisin. Appl Microbiol Biotechnol. 2010;87(2):729–37. https://doi.org/10.1007/s00253-010-2598-z.

    Article  CAS  PubMed  Google Scholar 

  88. Arnold RR, Wei HH, Simmons E, Tallury P, Barrow DA, Kalachandra S. Antimicrobial activity and local release characteristics of chlorhexidine diacetate loaded within the dental copolymer matrix, ethylene vinyl acetate. J Biomed Mater Res B Appl Biomater. 2008;86B(2):506–13. https://doi.org/10.1002/jbm.b.31049.

    Article  CAS  Google Scholar 

  89. Scaffaro R, Botta L, La Mantia FP. Preparation and characterization of polyolefin-based nanocomposite blown films for agricultural applications: preparation and characterization of polyolefin-based …. Macromol Mater Eng. 2009;294(6–7):445–54. https://doi.org/10.1002/mame.200900004.

    Article  CAS  Google Scholar 

  90. Cao-Hoang L, Chaine A, Grégoire L, Waché Y. Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese. Food Microbiol. 2010;27(7):940–4. https://doi.org/10.1016/j.fm.2010.05.025.

    Article  CAS  PubMed  Google Scholar 

  91. Kristo E, Koutsoumanis KP, Biliaderis CG. Thermal, mechanical and water vapor barrier properties of sodium caseinate films containing antimicrobials and their inhibitory action on Listeria monocytogenes. Food Hydrocolloids. 2008;22(3):373–86. https://doi.org/10.1016/j.foodhyd.2006.12.003.

    Article  CAS  Google Scholar 

  92. Blanco Massani M, Morando PJ, Vignolo GM, Eisenberg P. Characterization of a multilayer film activated with Lactobacillus curvatus CRL705 bacteriocins: Characterization of bacteriocin-activated film. J Sci Food Agric. 2012;92(6):1318–23. https://doi.org/10.1002/jsfa.4703.

    Article  CAS  PubMed  Google Scholar 

  93. Woraprayote W, Pumpuang L, Tosukhowong A, Zendo T, Sonomoto K, Benjakul S, Visessanguan W. Antimicrobial biodegradable food packaging impregnated with Bacteriocin 7293 for control of pathogenic bacteria in pangasius fish fillets. LWT. 2018;89:427–33. https://doi.org/10.1016/j.lwt.2017.10.026.

    Article  CAS  Google Scholar 

  94. Han J, Castell-Perez ME, Moreira RG. The influence of electron beam irradiation of antimicrobial-coated LDPE/polyamide films on antimicrobial activity and film properties. LWT Food Sci Technol. 2007;40(9):1545–54. https://doi.org/10.1016/j.lwt.2006.11.012.

    Article  CAS  Google Scholar 

  95. Scannell AGM, Hill C, Ross RP, Marx S, Hartmeier W, Arendt EK. Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin®. Int J Food Microbiol. 2000;60(2–3):241–9. https://doi.org/10.1016/S0168-1605(00)00314-7.

    Article  CAS  PubMed  Google Scholar 

  96. Iseppi R, Pilati F, Marini M, Toselli M, de Niederhäusern S, Guerrieri E, Messi P, Sabia C, Manicardi G, Anacarso I, Bondi M. Anti-listerial activity of a polymeric film coated with hybrid coatings doped with Enterocin 416K1 for use as bioactive food packaging. Int J Food Microbiol. 2008;123(3):281–7. https://doi.org/10.1016/j.ijfoodmicro.2007.12.015.

    Article  CAS  PubMed  Google Scholar 

  97. Chandrakasan G, Rodríguez-Hernández A-I, del RocíoLópez-Cuellar M, Palma-Rodríguez H-M, Chavarría-Hernández N. Bacteriocin encapsulation for food and pharmaceutical applications: Advances in the past 20 years. Biotechnol Lett. 2019;41(4–5):453–69. https://doi.org/10.1007/s10529-018-02635-5.

    Article  CAS  PubMed  Google Scholar 

  98. Nguyen VT, Gidley MJ, Dykes GA. Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol. 2008;25(3):471–8. https://doi.org/10.1016/j.fm.2008.01.004.

    Article  CAS  PubMed  Google Scholar 

  99. Pranoto Y, Rakshit SK, Salokhe VM. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Sci Technol. 2005;38(8):859–65. https://doi.org/10.1016/j.lwt.2004.09.014.

    Article  CAS  Google Scholar 

  100. Guiga W, Swesi Y, Galland S, Peyrol E, Degraeve P, Sebti I. Innovative multilayer antimicrobial films made with Nisaplin® or nisin and cellulosic ethers: Physico-chemical characterization, bioactivity and nisin desorption kinetics. Innov Food Sci Emerg Technol. 2010;11(2):352–60. https://doi.org/10.1016/j.ifset.2010.01.008.

    Article  CAS  Google Scholar 

  101. Neetoo H, Ye M, Chen H. Potential antimicrobials to control Listeria monocytogenes in vacuum-packaged cold-smoked salmon pâté and fillets. Int J Food Microbiol. 2008;123(3):220–7. https://doi.org/10.1016/j.ijfoodmicro.2008.02.001.

    Article  CAS  PubMed  Google Scholar 

  102. Jiménez-Villeda P-Y, Rodríguez-Hernández A-I, López-Cuellar-del-R M, Franco-Fernández M-J, Chavarría-Hernández N. Elaboration and characterization of pectin-gellan films added with concentrated supernatant of Streptococcus infantarius fermentations, and EDTA: Effects on the growth of Escherichia coli, Staphylococcus aureus and Listeria monocytogenes in a Mexican cheese medium, and physical-mechanical properties. Food Sci Technol. 2019;39(2):436–43. https://doi.org/10.1590/fst.32717.

    Article  Google Scholar 

  103. Eswaranandam S, Hettiarachchy S, Johnson MG. Antimicrobial activity of citric, lactic, malic, or tartaric acids and nisin-incorporated soy protein film against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella gaminara. J Food Sci. 2006;69(3):FMS79- FMS84. https://doi.org/10.1111/j.1365-2621.2004.tb13375.x

  104. Sulthana R, Archer AC. Bacteriocin nanoconjugates: boon to medical and food industry. J Appl Microbiol. 2021;131(3):1056–71. https://doi.org/10.1111/jam.14982.

    Article  CAS  PubMed  Google Scholar 

  105. Sharma TK, Sapra M, Chopra A, Sharma R, Patil SD, Malik RK, Pathania R, Navani NK. Interaction of bacteriocin-capped silver nanoparticles with food pathogens and their antibacterial effect. Int J Green Nanotechnol. 2012;4(2):93–110. https://doi.org/10.1080/19430892.2012.678757.

    Article  CAS  Google Scholar 

  106. Alishahi A. Antibacterial effect of chitosan nanoparticle loaded with nisin for the prolonged effect: synergistic effect of nanoparticle. J Food Saf. 2014;34(2):111–8. https://doi.org/10.1111/jfs.12103.

    Article  CAS  Google Scholar 

  107. Imran M, Revol-Junelles A-M, René N, Jamshidian M, Akhtar MJ, Arab-Tehrany E, Jacquot M, Desobry S. Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocolloids. 2012;29(2):407–19. https://doi.org/10.1016/j.foodhyd.2012.04.010.

    Article  CAS  Google Scholar 

  108. Singh AK, Bai X, Amalaradjou MAR, Bhunia AK. Antilisterial and antibiofilm activities of pediocin and LAP functionalized gold nanoparticles. Front Sustain Food Syst. 2018;2:74. https://doi.org/10.3389/fsufs.2018.00074.

    Article  Google Scholar 

Download references

Funding

We are grateful to the “Grant-In-Aid” scheme of University of Engineering and Management, Kolkata.

Author information

Authors and Affiliations

Authors

Contributions

All authors Dibyajit Lahiri, Moupriya Nag, Debasmita Bhattacharya, Ashmita Samanta, Drisha Roy#, Rina Rani Ray, Sreejita Ghosh, Bandita Dutta have contributed equally. have contributed equally.

Corresponding authors

Correspondence to Dibyajit Lahiri or Moupriya Nag.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, D., Nag, M., Bhattacharya, D. et al. Bacteriocin-mediated food coating: a strategic way to prevent food spoiling and food poisoning bacteria. Nutrire 49, 22 (2024). https://doi.org/10.1186/s41110-024-00264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-024-00264-9

Keywords

Navigation