Skip to main content

Advertisement

Log in

Enriched biscuits of Ficus Capensis modulates neurobehavioral performance and antioxidant status of L-NAME-induced hypertensive rats with anxiety-like behavior

  • Research
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Purpose

Anxiety and cognitive deterioration in hypertensive patients are underreported especially in hypertensive state. This study investigated the neuroprotective effect of Ficus capensis (FC) on cognition and anxiety-like behaviors in L-NAME-induced hypertensive male rats.

Method

Rats were administered 40 mg/kg/day L-NAME and treated with atenolol (10 mg/kg/day), diazepam (5 mg/kg/day), 2.5 g, and 5.0 g FC-enriched biscuits, respectively, (n = 8) per group for 21 consecutive days. Locomotor behavior was monitored using video-tracking software for open-field tests, elevated plus maze tests, and light and dark tests, and blood pressure was measured with non-invasive tail-cuff motoring. Furthermore, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), antioxidant enzymes' activities in the hypothalamic and medulla brain regions, and histological staining in the hypothalamic brain section were deduced.

Results

Findings from this study indicated that treatment of L-NAME-induced hypertensive rats with FC significantly (p < 0.05) ameliorated cognitive deficits and anxiety-like behavior, specifically by decreasing cumulative immobility duration in open field, rearing, latency time, and number in the dark and increasing latency time and number in the light in light and dark boxes, and zonal alterations in elevated plus maze. Additionally, FC assuaged the L-NAME-induced decrease in brain antioxidant enzyme activities and increased AChE and BChE activity and lipid peroxidation levels in the hypothalamus and medulla of hypertensive rats.

Conclusion

Taken together, FC revealed its role in reducing L-NAME-induced cognitive decline and anxiety-like behavior in hypertensive rats to be linked to its ability to restore cholinesterase enzyme activity and augment redox status. However, FC had no effect on the brain structure of L-NAME hypertensive rats in the current study.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are made available by contacting the corresponding author (olufunke.ajeigbe@elizadeuniversity.edu.ng; olufunke2017@gmail.com).

Abbreviations

AChE:

Acetylcholinesterase

BChE:

Butyrylcholinesterase

CAT:

Catalase

CNS:

Central nervous system

EDRF:

Endothelium-derived relaxing

FC:

Ficus capensis

HPA:

Hypothalamic-pituitary-adrenal (HPA)

L-NAME:

Nw (G)-nitro-L-arginine-methyl-ester

NO:

Nitric oxide

NOS:

Nitric oxide synthase

MDA:

Malondialdehyde

RAAS:

Renin-angiotensin-aldosterone system

ROS:

Reactive oxygen species

SBP:

Systolic blood pressure

SOD:

Superoxide dismutase

SNS:

Sympathetic nervous system

References

  1. Dibona GF. Sympathetic nervous system and hypertension. Hypertension. 2013;61(3):556–60.

    Article  CAS  PubMed  Google Scholar 

  2. De Wardener HE. The hypothalamus and hypertension. Physiol Rev. 2001;81(4):1599–658.

    Article  PubMed  Google Scholar 

  3. Fischer S. The hypothalamus in anxiety disorders. Handbook of Clin Neurol. 2021;180:149–60.

    Article  Google Scholar 

  4. Graeff FG, Zangrossi JH. The hypothalamic-pituitary-adrenal axis in anxiety and panic. Psychol Neurosci. 2010;3(1):3–8.

    Article  Google Scholar 

  5. Luca L, Nemeroff CB. The role of the hypothalamic–pituitary–adrenal axis in anxiety disorders. Primer on Anxiety Disorders: Translational Perspect Diagnosis Treatment, 2015;401.

  6. Singh B, Jalwal P, Dahiya J, Khokhara S. Research methods for animal studies of the anxiolytic drugs. The Pharma Innovation. 2016;5(1):19.

    Google Scholar 

  7. Kumar D, Bhat ZA, Kumar V, Shah MY. Coumarins from Angelica archangelica Linn. and their effects on anxiety-like behavior. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;40:180–6.

    Article  CAS  Google Scholar 

  8. Simko F, Baka T, Poglitsch M, Repova K, Aziriova S, Krajcirovicova K, Zorad S, Adamcova M, Paulis L. Effect of ivabradine on a hypertensive heart and the renin-angiotensin-aldosterone system in L-NAME-induced hypertension. Int J Molecular Sci. 2018;19(10):3017.

    Article  Google Scholar 

  9. Villarejo AB, Prieto I, Segarra AB, Banegas I, Wangensteen R, Vives F, De Gasparo M, Ramírez-Sánchez M. Relationship of angiotensinase and vasopressinase activities between hypothalamus, heart, and plasma in L-NAME-treated WKY and SHR. Hormone Metab Res. 2014;46(08):561–7.

    Article  CAS  Google Scholar 

  10. Cavalcante GL, Ferreira FN, da Silva MTB, Soriano RN, Maia Filho ALM, Arcanjo DDR, Sabino JPJ. Acetylcholinesterase inhibition prevents alterations in cardiovascular autonomic control and gastric motility in L-NAME-induced hypertensive rats. Life Sci. 2020;256:117915.

    Article  CAS  PubMed  Google Scholar 

  11. Chaswal M, Das S, Prasad J, Katyal A, Fahim M. Chemical sympathectomy restores baroreceptor-heart rate reflex and heart rate variability in rats with chronic nitric oxide deficiency. Physiological Res. 2015;64(4):459.

    Article  CAS  Google Scholar 

  12. Rapoport RM, Murad F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res. 1983;52(3):352–7.

    Article  CAS  PubMed  Google Scholar 

  13. Boultadakis A, Georgiadou G, Pitsikas N. Effects of the nitric oxide synthase inhibitor L-NAME on different memory components as assessed in the object recognition task in the rat. Behavioural Brain Res. 2012;207(1):208–14.

    Article  Google Scholar 

  14. Bajpai A, Verma AK, Srivastava M, Srivastava R. Oxidative stress and major depression. J Clin Diagnostic Res: JCDR, 2014;8(12):CC04.

  15. Iida S, Baumbach GL, Lavoie JL, Faraci FM, Sigmund CD, Heistad DD. Spontaneous stroke in a genetic model of hypertension in mice. Stroke. 2005;36(6):1253–8.

    Article  PubMed  Google Scholar 

  16. Jain R, Mukherjee K, Mohan D. Effects of nitric oxide synthase inhibitors in attenuating nicotine withdrawal in rats. Pharmacol Biochem Behavior. 2008;88(4):473–80.

    Article  CAS  Google Scholar 

  17. Igoli JO, Ogaji OG, Tor-Ayiin TA, Igoli NP. Traditional medicine practice amongst the Igede people of Nigeria. Part II. Afri J Traditional, Complem Alternative Med. 2005;2(2):134–52.

    Google Scholar 

  18. Ojokuku SA, Okunowo WO, Apena A. Evaluation of the chemical composition of Khaya grandifoliola and Ficus capensis. J Med Plants Res. 2010;4(12):1126–9.

    CAS  Google Scholar 

  19. Ezeigwe OC, Nzekwe FA, Nworji OF, Ezennaya CF, Iloanya EL, Asogwa KK. Effect of aqueous extract of F. capensis leaves and its combination with C. aconitifolius leaves on essential biochemical parameters of phenylhydrazine-induced anemic rats. J Experim Pharmacol, 2020;191–201.

  20. Muanda NF, Dicko A, Soulimani R. Chemical composition and biological activities of Ficus capensis leaves extracts. J Natural Products. 2010;3(1):147–60.

    Google Scholar 

  21. Ajeigbe OF, Oboh G, Ademosun AO, Oyagbemi AA. Ficus asperifolia Miq-enriched biscuit diet protects against L-NAME induced hyperlipidemia and hypertension in rats. Food Frontiers. 2022;3(1):150–60.

    Article  CAS  Google Scholar 

  22. Akinyemi AJ, Oboh G, Oyeleye SI, Ogunsuyi O. Anti-amnestic effect of curcumin in combination with donepezil, an anticholinesterase drug: involvement of cholinergic system. Neurotox Res. 2017;31:560–9.

    Article  CAS  PubMed  Google Scholar 

  23. Oboh G, Ademiluyi AO, Akinyemi AJ. Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp Toxicol Pathol. 2012;1:64(4):315–9

  24. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal of Biochem. 1976;72:248–54.

    Article  CAS  Google Scholar 

  25. Li B, Stribley JA, Ticu A, Xie W, Schopfer LM, Hammond P, Brimijoin S, Hinrichs SH, Lockridge O. Abundant tissue butyrylcholinesterase and its possible function in the acetylcholinesterase knockout mouse. J Neurochem. 2000;75(3):1320–31.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar V, Bhat ZA, Kumar D. Animal models of anxiety: a comprehensive review. J pharmacol Toxicol Methods. 2013;68(2):175–83.

    Article  CAS  PubMed  Google Scholar 

  27. Sandini TM, Udo MS, Reis-Silva TM, Sanches D, Bernardi MM, Flório JC, Spinosa HDS. Prenatal exposure to integerrimine N-oxide enriched butanolic residue from Senecio brasiliensis affects behavior and striatal neurotransmitter levels of rats in adulthood. Int J Developmental Neurosci. 2015;47:157–64.

    Article  CAS  Google Scholar 

  28. Kanda T, Araki M, Nakano M, Imai S, Suzuki T, Murata K, Kobayashi I. Chronic effect of losartan in a murine model of dilated cardiomyopathy: comparison with captopril. J Pharmacol Experim Therapeutics. 1995;273(2):955–8.

    CAS  Google Scholar 

  29. Ajeigbe OF, Oboh G, Ademosun AO, Oyagbemi AA. Fig leaves varieties reduce blood pressure in hypertensive rats through modulation of antioxidant status and activities of arginase and angiotensin-1 converting enzyme. Com Clin Pathol. 2021;30(3):503–13.

    Article  CAS  Google Scholar 

  30. Akomolafe SF, Oboh G, Oyeleye SI, Boligon AA. Aqueous extract from Ficus capensis leaves inhibits key enzymes linked to erectile dysfunction and prevent oxidative stress in rats’ penile tissue. NFS J. 2016;4:15–21.

    Article  Google Scholar 

  31. Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F. Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Neurobiological effects of gallic acid: current perspectives. Chinese Med. 2023;18(1):27.

    Article  CAS  Google Scholar 

  32. Foudah AI, Alqarni MH, Alam A, Devi S, Salkini MA, Alam P. Rutin improves anxiety and reserpine-induced depression in rats. Molecules. 2022;27(21):7313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee B, Yeom M, Shim I, Lee H, Hahm DH. Protective effects of quercetin on anxiety-like symptoms and neuroinflammation induced by lipopolysaccharide in rats. Evid Based Complement Alternat Med, vol. 2020;2020. https://doi.org/10.1155/2020/4892415

  34. Ajeigbe OF, Oboh G, Ademosun AO, Umar HI. Fig (Ficus exasperata and Ficus asperifolia)-supplemented diet improves sexual function, endothelial nitric oxide synthase and suppresses tumour necrosis factor-alpha genes in hypertensive rats. Andrologia. 2022;54(1):e14289.

    Article  CAS  PubMed  Google Scholar 

  35. Menard J, Treit D. Effects of centrally administered anxiolytic compounds in animal models of anxiety. Neurosci Biobehavioral Reviews. 1999;23(4):591–613.

    Article  CAS  Google Scholar 

  36. Bourin M, Petit-Demoulière B, Nic Dhonnchadha B, Hascöet M. Animal models of anxiety in mice. Fundamental Clin Pham. 2007;21(6):567–74.

    Article  CAS  Google Scholar 

  37. Kilfoil T, Michel A, Montgomery D, Whiting RL. Effects of anxiolytic and anxiogenic drugs on exploratory activity in a simple model of anxiety in mice. Neuropharmacol. 1989;28(9):901–5.

    Article  CAS  Google Scholar 

  38. Krajcirovicova K, Aziriova S, Baka T, Repova K, Adamcova M, Paulis L, Simko F. Ivabradine does not impair anxiety-like behavior and memory in both healthy and L-NAME-induced hypertensive rats. Physiol Res. 2018;67:S655–64.

    Article  CAS  PubMed  Google Scholar 

  39. Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012;13:93–110.

    Article  CAS  PubMed  Google Scholar 

  40. Hirooka Y, Kishi T, Sakai K, Takeshita A, Sunagawa K. Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am J Physiology-Regulatory, Integrative Comp Physiol. 2011;300(4):R818–26.

    Article  CAS  Google Scholar 

  41. Briones AM, Touyz RM. Oxidative stress and hypertension: current concepts. Curr Hypertens Rep. 2010;12:135–42.

    Article  CAS  PubMed  Google Scholar 

  42. Peterson JR, Sharma RV, Davisson RL. Reactive oxygen species in the neuropathogenesis of hypertension. Curr Hypertens Rep. 2006;8(3):232–41.

    Article  CAS  PubMed  Google Scholar 

  43. Czech DA, Jacobson EB, LeSueur-Reed KT, Kazel MR. Putative anxiety-linked effects of the nitric oxide synthase inhibitor L-NAME in three murine exploratory behavior models. Pharmacol Biochem Behavior. 2003;75(4):741–8.

    Article  CAS  Google Scholar 

  44. Massoulié J, Sussman J, Bon S, Silman I. Structure and functions of acetylcholinesterase and butyrylcholinesterase. Progress in Brain Res. 1993;98:139–46.

    Article  Google Scholar 

  45. Duysen EG, Li B, Darvesh S, Lockridge O. Sensitivity of butyrylcholinesterase knockout mice to (−)-huperzine A and donepezil suggests humans with butyrylcholinesterase deficiency may not tolerate these Alzheimer’s disease drugs and indicates butyrylcholinesterase function in neurotransmission. Toxicol. 2007;233(1–3):60–9.

    Article  CAS  Google Scholar 

  46. Girard E, Bernard VR, Minic J, Chatonnet A, Krejci E, Molg J. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice. Life Sci. 2007;80(24–25):2380–5.

    Article  CAS  PubMed  Google Scholar 

  47. Baratti CM, Boccia MM, Blake MG. Pharmacological effects and behavioral interventions on memory consolidation and reconsolidation. Brazilian J Med Biol Res. 2009;42:148–54.

    Article  CAS  Google Scholar 

  48. Zhang J, Benveniste H, Klitzman B, Piantadosi CA. Nitric oxide synthase inhibition and extracellular glutamate concentration after cerebral ischemia/reperfusion. Stroke. 1995;26(2):298–304.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

“All authors contributed to the study conception and design by [Olufunke Florence Ajeigbe]. The funding acquisition, material preparation, data collection and formal analysis were performed by [Olufunke Florence Ajeigbe] and [Ayokunle Olubode Ademosun]. Drafting of Manuscript visualization, and critical revision was done by [Olufunke Florence Ajeigbe] and [Ganiyu Oboh]. The first draft of the manuscript was written by [Olufunke Florence Ajeigbe] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Olufunke Florence Ajeigbe.

Ethics declarations

Ethics approval

Approval was issued at the Centre for Research and Development (CERAD), Federal University of Technology, Akure, Nigeria and assigned voucher registration number FUTA/ETH/21/08.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajeigbe, O.F., Oboh, G. & Ademosun, A.O. Enriched biscuits of Ficus Capensis modulates neurobehavioral performance and antioxidant status of L-NAME-induced hypertensive rats with anxiety-like behavior. Nutrire 49, 20 (2024). https://doi.org/10.1186/s41110-024-00261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-024-00261-y

Keywords

Navigation