Skip to main content

Advertisement

Log in

Anti-arthritic potential of latex of Alstonia scholaris (L.) R. Br.: an in silico and in vivo approach

  • Research
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Background

In the Dhemaji province of Assam, India, the latex of Alstonia scholaris (AS) is traditionally used as a topical agent for arthritis treatment. This study was designed for the first time to explore AS latex for chemical profiling, in vivo anti-arthritic activity and in silico molecular docking against cyclooxygenase (COX-2).

Methods

AS latex was chemically profiled by FTIR, HPTLC and LC-MS/MS. A complete Freund’s adjuvant (CFA)-induced arthritic rat model was used for the evaluation of anti-arthritic activity of AS latex. The compounds detected in AS latex were subjected to molecular docking to determine their ligand-binding affinities with COX-2.

Results

HPTLC fingerprinting and LC-MS/MS of AS latex confirmed the presence of potent anti-arthritic components such as quercetin, kaempferol, and ursolic acid. An in vivo study revealed that AS latex treatment restored arthritic parameters and controlled haematological and biochemical parameters in arthritic rats. AS latex prevented bone destruction, reduced tissue swelling and joint space narrowing in rats with arthritis. It reduced joint friction and made physical movements comfortable and pain-free in arthritic rats. An in silico study revealed that compounds in AS latex promoted better binding to the receptor protein COX-2. The results of the molecular docking studies supported in vivo statistics.

Conclusion

Based on studies performed in vivo and in silico, the results indicate that AS latex may be used as a potent novel anti-arthritic agent in treating rheumatoid arthritis and other inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mcinnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365(23):2205–19. https://doi.org/10.1056/NEJMra1004965.

    Article  PubMed  CAS  Google Scholar 

  2. Chang X, He H, Zhu L, et al. Protective effect of apigenin on Freund’s complete adjuvant-induced arthritis in rats via inhibiting P2X7/NF-kappaB pathway. Chem Biol Interact. 2015;236:41–6. https://doi.org/10.1016/j.cbi.2015.04.021.

    Article  PubMed  CAS  Google Scholar 

  3. Cui X, Wang R, Bian P, Wu Q, Seshadri VDD, Liu L. Evaluation of anti-arthritic activity of nimbolide against Freund’s adjuvant induced arthritis in rats. Artif Cells Nanomed Biotechnol. 2019;47(1):3391–8. https://doi.org/10.1080/21691401.2019.1649269.

    Article  CAS  Google Scholar 

  4. Banik B, Das S, Das MK. Medicinal plants with potent anti-inflammatory and anti-arthritic properties found in eastern parts of the Himalaya: an ethnomedicinal review. Pharmacogn Rev. 2020;14(28):121–37. https://doi.org/10.5530/phrev.2020.14.16.

    Article  CAS  Google Scholar 

  5. Freire MO, Dyke TEV. Natural resolution of inflammation. Periodontol. 2013;63(1):149–64. https://doi.org/10.1136/pgmj.47.546.227.

    Article  Google Scholar 

  6. Abdulkhaleq LA, Assi MA, Abdullah R, Zamri-Saad M, Taufiq-Yap YH, Hezmee MNM. The crucial roles of inflammatory mediators in inflammation: a review. Vet World. 2018;11(5):627–35. https://doi.org/10.14202/vetworld.2018.627-635.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Aiyalu R, Govindarjan A, Ramasamy A. Formulation and evaluation of topical herbal gel for the treatment of arthritis in animal model. Braz J Pharm Sci. 2016;52(3):493–507. https://doi.org/10.1590/S1984-82502016000300015.

    Article  CAS  Google Scholar 

  8. Atzeni F, Benucci M, Sallì S, Bongiovanni S, Boccassini L, Sarzi-Puttini P. Different effects of biological drugs in rheumatoid arthritis. Autoimmun Rev. 2013;12(5):575–9. https://doi.org/10.1016/j.autrev.2012.10.020.

    Article  PubMed  CAS  Google Scholar 

  9. Emmanuel JH, Montgomery RD. Gastric ulcer and the anti-arthritic drugs. Postgrad Med. 2017;47(546):227–32. https://doi.org/10.1136/pgmj.47.546.227.

    Article  Google Scholar 

  10. Singh G, Ramey DR, Morfeld D, Shi H, Hatoum HT, Fries JF. Gastrointestinal tract complications of non-steroidal anti-inflammatory drug treatment in rheumatoid arthritis: a prospective observational cohort study. Arch Intern Med. 1996;156(14):1530–6.

    Article  PubMed  CAS  Google Scholar 

  11. Gaffo A, Saag KG, Curtis JR. Treatment of rheumatoid arthritis. Am J Health Syst Pharm. 2006;63:2451–65. https://doi.org/10.2146/ajhp050514.

    Article  PubMed  CAS  Google Scholar 

  12. Choudhary M, Kumar V, Malhotra H, Singh S. Medicinal plants with potential anti-arthritic activity. J Intercult Ethnopharmacol. 2015;4(2):147–79. https://doi.org/10.5455/jice.20150313021918.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Ghosh S, Mehla RK, Sirohi SK, Roy B. The effect of dietary garlic supplementation on body weight gain, feed intake, feed conversion efficiency, faecal score, faecal coliform count and feeding cost in crossbred dairy calves. Trop Anim Health Prod. 2010;42:961–3. https://doi.org/10.1007/s11250-009-9514-5.

    Article  PubMed  Google Scholar 

  14. Khyade MS, Kasote DM, Vaikos NP. Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. Ex G. Don: a comparative review on traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2014;153(1):1–18. https://doi.org/10.1016/j.jep.2014.01.025.

    Article  PubMed  CAS  Google Scholar 

  15. Rahman AU, Asif M, Ghazala M, Fatima J, Alvi KA. Scholaricine, an alkaloid from Alstonia scholaris. Phytochemistry. 1985;24(11):2771–3. https://doi.org/10.1016/S0031-9422(00)80725-6.

    Article  Google Scholar 

  16. Kam TS, Nyeoh KT, Sim KM, Yoganathan K. Alkaloids from Alstonia scholaris. Phytochemistry. 1997;45(6):1303–5. https://doi.org/10.1016/S0031-9422(97)00106-4.

    Article  CAS  Google Scholar 

  17. Kaushik P, Kaushik D, Sharma N, Rana AC. Alstonia scholaris: its phytochemistry and pharmacology. Chron Young Sci. 2011;2(2):71–8. https://doi.org/10.4103/2229-5186.82970.

    Article  Google Scholar 

  18. Varshney A, Goyal MM. Phytochemical study on the leaves of Alstonia scholaris and their effects on pathogenic organisms. Anc Sci Life. 1995;15(1):30–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  19. Pandey K, Shevkar C, Bairwa K, Kate AS. Pharmaceutical perspective on bioactives from Alstonia scholaris: ethnomedicinal knowledge, phytochemistry, clinical status, patent space and future directions. Phytochem Rev. 2020;19(1):191–233. https://doi.org/10.1007/s11101-020-09662-z.

    Article  CAS  Google Scholar 

  20. Antony M, Menon DB, Joel J, MS DL, Arun K, Thankamani V. Phytochemical analysis and antioxidant activity of Alstonia scholaris. Pharmacogn J. 2011;3(26):13–8. https://doi.org/10.5530/pj.2011.26.3.

    Article  CAS  Google Scholar 

  21. Chhajed M, Jain A, Pagariya A, Dwivedi S, Jain N, Taile V, Alstonia scholaris Linn. R. Br.: an assessment of its botany, conventional utilization, phytochemistry and pharmacology. Pharmacog Rev. 2023;17(33):184–203. https://doi.org/10.5530/097627870302.

    Article  CAS  Google Scholar 

  22. Baliga MS. Review of the phytochemical, pharmacological and toxicological properties of Alstonia scholaris Linn. R. Br (Saptaparna). Chin J Integr Med. 2012;1–14. https://doi.org/10.1007/s11655-011-0947-0.

  23. Arulmozhi S, Mazumder PM, Purnima A, Narayanan LS. Pharmacological activities of Alstonia scholaris Linn. (Apocynaceae)-a review. Pharm Rev. 2007;1:163–70.

    CAS  Google Scholar 

  24. Kanase V, Mane DJ. A pharmacognostic and pharmacological review on Alstonia scholaris. Asian J Pharm Clin Res. 2018;11(12):22–6. https://doi.org/10.22159/ajpcr.2018.v11i12.28124.

    Article  CAS  Google Scholar 

  25. Hu BY, Zhao YL, Ma DY, Xiang ML, Zhao LX, Luo XD. Anti-hyperuricemic bioactivity of Alstonia scholaris and its bioactive triterpenoids in vivo and in vitro. J Ethnopharmacol. 2022;290:115049. https://doi.org/10.1016/j.jep.2022.115049.

    Article  PubMed  CAS  Google Scholar 

  26. Fatima K, Khalid S, Qadeer K, Yasin H, Abrar H, Arsalan A, Hussain RA. In-vitro antigout potential of Alstonia scholaris flower, characterisation and prospective ligand-receptor interaction of bioactive lead compound. Heliyon. 2023;9(3):e14093. https://doi.org/10.1016/j.heliyon.2023.e14093.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Cai XH, Shang JH, Fang T, Lou XD. Novel alkaloids from Alstonia scholaris. Zeitschrift für Naturforschung B. 2010;65(9):1164–8. https://doi.org/10.1515/znb-2010-0918.

    Article  CAS  Google Scholar 

  28. Subraya CK, Hariharan GD. Antioxidant and anti-inflammatory activity of Alstonia scholaris R. Br. stem bark extract. Free Radic Antioxid. 2012;2(2):55–7. https://doi.org/10.5530/ax.2012.2.2.9.

    Article  CAS  Google Scholar 

  29. Feng L, Chen Y, Yuan L, Liu X, Gu JF, Zhang MH, Wang Y. A combination of alkaloids and triterpenes of Alstonia scholaris (Linn.) R. Br. leaves enhances immunomodulatory activity in C57BL/6 mice and induces apoptosis in the A549 cell line. Molecules. 2013;18(11):13920–39. https://doi.org/10.3390/molecules181113920.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Maurya A, Srivastava SK. A simple and reliable HPTLC method for the determination of four marker components in the quality control of Alstonia scholaris. JPC- J Planar Chromat. 2013;26:254–9. https://doi.org/10.1556/JPC.26.2013.3.9.

    Article  CAS  Google Scholar 

  31. Sanaye MM, Zehra S. Development and validation of HPTLC method for identification and quantification of ursolic acid in the leaves of Alstonia scholaris. Int J Pharm Sci Res. 2020;11(11):5540–6. https://doi.org/10.13040/IJPSR.0975-8232.11(11).5540-46.

    Article  CAS  Google Scholar 

  32. Annalakshmi R, Mahalakshmi S, Charles C, Sahayam S. GC MS and HPTLC analysis of leaf extract of Madhuca longifolia (Koenig) Linn. Drug Invent Today. 2013;5:76–80. https://doi.org/10.1016/j.dit.2013.05.004.

    Article  CAS  Google Scholar 

  33. OECD. Test No 404: Acute dermal irritation/corrosion, OECD guidelines for the testing of chemicals, Section 4, OECD. Paris: OECD Publishing; 2015. https://doi.org/10.1787/9789264242678-en.

    Book  Google Scholar 

  34. Ekambaram S, Perumal SS, Subramanian V. Evaluation of the anti-arthritic activity of Strychnos potatorum Linn seeds in Freund’s adjuvant induced arthritic rat model. BMC Complement Altern Med. 2010;10:56. https://doi.org/10.1186/1472-6882-10-56.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Perumal SS, Ekambaram SP, Dhanam T. In vivo anti-arthritic activity of the ethanol extracts of stem bark and seeds of Calophyllum inophyllum in Freund’s complete adjuvant induced arthritis. Pharm Biol. 2017;55(1):1330–6. https://doi.org/10.1080/13880209.2016.1226346.

    Article  PubMed  CAS  Google Scholar 

  36. Newbould BB. Chemotherapy of arthritis induced in rats by mycobacterial adjuvant. Br J Pharmacol Chemother. 1963;21(1):127–36. https://doi.org/10.1111/j.1476-5381.1963.tb01508.x.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Banik B, Das MK. Therapeutic potential of Alstonia scholaris latex in the management of inflammatory diseases: an in vitro approach. Pharmacog Res. 2023;15(2):478–83.

    Article  CAS  Google Scholar 

  38. Olajide OA, Awe SO, Makinde JM, Ekhelar AI, Olusola A, Morebise O, et al. Studies on the anti-inflammatory, antipyretic and analgesic properties of Alstonia boonei stem bark. J Ethnopharmacol. 2000;71:179–86. https://doi.org/10.1016/s0378-8741(99)00200-7.

    Article  PubMed  CAS  Google Scholar 

  39. Paval J, Kaitheri SK, Potu BK, et al. Anti-arthritic potential of the plant Justicia gendarussa Burm F. Clinics. 2009;64:357–62. https://doi.org/10.1590/S1807-59322009000400015.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chesbrough M, McArthur J. Laboratory manual of rural tropical hospitals. London: The English Language Book Society and Churchill Livingstone; 1972.

    Google Scholar 

  41. Wintrobe MM. Clinical hematology. Philadelphia: Lea and Febiger; 1975.

    Google Scholar 

  42. Mythilypriya R, Shanthi P, Sachdanandam P. Salubrious effect of Kalpaamruthaa, a modified indigenous preparation in adjuvant induced arthritis in rats: a biochemical approach. Chem Biol Interact. 2008;173(2):148–58. https://doi.org/10.1016/j.cbi.2008.02.007.

    Article  PubMed  CAS  Google Scholar 

  43. Harris ED. Rheumatoid arthritis. Pathophysiology and implications for therapy. N Engl J Med. 1990;322(18):1277–89. https://doi.org/10.1056/NEJM199005033221805.

    Article  PubMed  Google Scholar 

  44. De S, Kumar RS, Gauthaman A, Kumar SA, Paira P, Moorthy A, Banerjee S. Luminescent ruthenium (II)-para-cymene complexes of aryl substituted imidazo-1, 10-phenanthroline as anticancer agents and the effect of remote substituents on cytotoxic activities. Inorg Chim Acta. 2021;515:120066. https://doi.org/10.1016/j.ica.2020.120066.

    Article  CAS  Google Scholar 

  45. Rouzer CA, Marnett LJ. Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs. Chem Rev. 2020;120(15):7592–641. https://doi.org/10.1021/acs.chemrev.0c00215.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Araújo PHF, Ramos RS, da Cruz JN, et al. Identification of potential COX-2 inhibitors for the treatment of inflammatory diseases using molecular modeling approaches. Molecules. 2020;25(18):E4183. https://doi.org/10.3390/molecules25184183.

    Article  CAS  Google Scholar 

  47. De S, Chaudhuri SR, Panda A, Jadhav GR, Kumar RS, Manohar P, Ramesh N, Mondal A, Moorthy A, Banerjee S, Paira P. Synthesis, characterisation, molecular docking, biomolecular interaction and cytotoxicity studies of novel ruthenium (ii)–arene-2-heteroaryl benzoxazole complexes. New J Chem. 2019;43(8):3291–302. https://doi.org/10.1039/C8NJ04999H.

    Article  CAS  Google Scholar 

  48. Jitta SR, Daram P, Gourishetti K, Misra CS, Polu PR, Shah A, Shreedhara CS, Nampoothiri M, Lobo R. Terminalia tomentosa bark ameliorates inflammation and arthritis in carrageenan induced inflammatory model and Freund’s adjuvant-induced arthritis model in rats. J Toxicol. 2019;17:7898914. https://doi.org/10.1155/2019/7898914.

    Article  CAS  Google Scholar 

  49. Karmakar S, Kay J, Gravallese EM. Bone damage in rheumatoid arthritis: mechanistic insights and approaches to prevention. Rheum Dis Clin N Am. 2010;36:385–404. https://doi.org/10.1016/j.rdc.2010.03.003.

    Article  Google Scholar 

  50. Bax M, van Heemst J, Huizinga TW, et al. Genetics of rheumatoid arthritis: what have we learned? Immunogenetics. 2011;63:459–66. https://doi.org/10.1007/s00251-011-0528-6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Zhang X, Dong Y, Dong H, et al. Investigation of the effect of phlomisoside F on complete Freund’s adjuvant-induced arthritis. Exp Ther Med. 2017;13:710–6.

    Article  PubMed  CAS  Google Scholar 

  52. Tag HM, Kelany OE, Tantawy HM, et al. Potential anti-inflammatory effect of lemon and hot pepper extracts on adjuvant-induced arthritis in mice. J Basic Appl Zool. 2014;67:149–57. https://doi.org/10.1016/j.jobaz.2014.01.003.

    Article  CAS  Google Scholar 

  53. Walz DT, Dimartino MJ, Misher A. Adjuvant-induced arthritis in rats. II. Drug effects on physiologic and biochemical and immunologic parameters. J Pharmacol Exp Ther. 1971;178(1):223–31.

    PubMed  CAS  Google Scholar 

  54. Woode E, Boakye-Gyasi E, Danquah CA, Ansah C, Duwiejua M. Anti-arthritic effects of Palisota hirsuta K. Schum. leaf extract in Freund’s adjuvant-induced arthritis in rats. Int J Pharmcol. 2009;5(3):181–90.

    Article  Google Scholar 

  55. Badilla B, Mora G, Lapa AJ, Emim JAS. Anti-inflammatory activity of Urera baccifera (Urticaceae) in Sprague-Dawley rats. Rev Bio Trop. 1999;47(3):365–71.

    CAS  Google Scholar 

  56. Roubenoff R, Roubenoff RA, Cannon JG, Kehayias JJ, Zhuang B, Dawson-Hughes B, et al. Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Investig. 1994;93(6):2379–86.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Rall LC, Roubenoff R. Body composition, metabolism, and resistance exercise in patients with rheumatoid arthritis. Arthritis Care Res. 1996;9(2):151–6.

    Article  PubMed  CAS  Google Scholar 

  58. Roubenoff R, Freeman LM, Smith DE, Abad LW, Dinarello CA, Kehayias JJ. Adjuvant arthritis as a model of inflammatory cachexia. Arthritis Rheum. 1997;40(3):534–9. https://doi.org/10.1002/art.1780400320.

    Article  PubMed  CAS  Google Scholar 

  59. Mondal P, Das S, Mahato K, et al. Evaluation of anti-arthritic potential of the hydro-alcoholic extract of the stem bark of Plumeria rubra in Freund’s complete adjuvant-induced arthritis in rats. Int J Pharm Sci Res. 2016;7(9):3675–88. https://doi.org/10.13040/IJPSR.0975-8232.7(9).3675-88.

    Article  CAS  Google Scholar 

  60. Rajendran R, Krishnakumar E. Anti-arthritic activity of Premna serratifolia Linn., wood against adjuvant induced arthritis. Avicenna J Med Biotechnol. 2010;2(2):101–6.

    PubMed  PubMed Central  Google Scholar 

  61. Kore KJ, Shete RV, Desai NV. Anti-arthritic activity of hydroalcoholic extract of Lawsonia inermis. Int J Drug Dev Res. 2011;3(4):217–24.

    CAS  Google Scholar 

  62. Ochaion A, Bar-Yehuda S, Cohn S, Del Valle L, Perez-Liz G, Madi L, et al. Methotrexate enhances the anti-inflammatory effect of CF101 via up-regulation of the A3 adenosine receptor expression. Arthritis Res Ther. 2006;8(6):R169. https://doi.org/10.1186/ar2078.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Prajapati DS, Shah JS, Sen DJ. The modulatory effect of telmisartan on anti-inflammatory effect of rosiglitazone in adjuvant arthritis model. Int J Res Pharm and Biomed Sci. 2011;2:554–66.

    Google Scholar 

  64. Kumar V, Bhatt PC, Rahman M, Patel DK, Sethi N, Kumar A, et al. Melastoma malabathricum Linn. attenuates complete Freund’s adjuvant induced chronic inflammation in Wistar rats via inflammation response. BMC Complement Altern Med. 2016;16:510.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mowat AG. Hematologic abnormalities in rheumatoid arthritis. Semin Arthritis Rheum. 1971;1(3):195–219. https://doi.org/10.1016/0049-0172(72)90001-7.

    Article  Google Scholar 

  66. Rajaram C, Reddy KR, Sekhar KBC. Evaluation of anti-arthritic activity of Caesalpinia pulcherrima in Freund’s complete adjuvant induced arthritic rat model. J Young Pharmacists. 2015;7:128–32.

    Article  Google Scholar 

  67. William JK. Arthritis allied condition a textbook of rheumatology. Baltimore, Tokyo: Waverlay Company; 1996.

    Google Scholar 

  68. Cui X, Wang R, Bian P, Wu Q, Seshadri VDD, Liu L. Evaluation of anti-arthritic activity of nimbolide against Freund’s adjuvant-induced arthritis in rats. Artif Cells Nanomed Biotechnol. 2019;47(1):3391–8. https://doi.org/10.1080/21691401.2019.1649269.

    Article  PubMed  CAS  Google Scholar 

  69. Khalid M, Alqarni MH, Shoaib A, Arif M, Foudah AI, Afzal O, Ali A, Ali A, Alqahtani SS, Altamimi ASA. Anti-arthritic and anti-inflammatory potential of Spondias mangifera extract fractions: an in silico, in vitro and in vivo approach. Plants. 2021;10:825. https://doi.org/10.3390/plants10050825.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Bandaru N, Prasanth DSNBK, Reddy AR, Rao SNK, Nemmani KVS. In-silico molecular docking studies of some isolated phytochemicals from Biophytum veldkampii against cyclooxygenase-II enzyme and in vivo anti-inflammatory activity. Pharmacogn Res. 2021;13(4):192–8. https://doi.org/10.5530/pres.13.4.11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh (Assam), India, and the Department of Herbal Science and Technology, ADP College, Nagaon (Assam), India, for providing the platform to conduct this work.

Availability of data and materials

The data are available on request to the corresponding author.

Author information

Authors and Affiliations

Authors

Contributions

BB: plant material collection, chemical analysis, biological experiments, interpretation of the data, statistical analysis, manuscript writing. MKD: conception of the study, conceived, designed, and contributed to the formal analysis of the study, and reviewed/ edited the manuscript. SDAS: figure preparation, statistical analysis. SD: in silico docking study, editing of the manuscript. All authors have read the final manuscript and approved the submission.

Corresponding author

Correspondence to Malay Kumar Das.

Ethics declarations

Ethical approval

Protocols of the analysis were approved by the Institutional Animals Ethical Committee (IAEC) of Dibrugarh University, Dibrugarh-785004, Assam (IAEC Approval number: IAEC/DU/177, dated 27/08/2019). The guidelines of the “Committee for the Purpose of Control and Supervision of Experiments on Animals” (CPCSEA), Government of India, were followed.

Consent to participate

This declaration is “not applicable”.

Consent for publication

This declaration is “not applicable”.

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banik, B., Das, M.K., Das, S. et al. Anti-arthritic potential of latex of Alstonia scholaris (L.) R. Br.: an in silico and in vivo approach. Nutrire 48, 40 (2023). https://doi.org/10.1186/s41110-023-00225-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-023-00225-8

Keywords

Navigation