Skip to main content
Log in

Vitamin B12 and coenzyme Q10 ameliorated alcohol-driven impairment of hematological parameters, inflammation, and organ damage in a mouse model

  • Research
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Introduction

Chronic alcohol consumption is associated with a myriad of negative physiological and biochemical changes in humans. Vitamin B12 and coenzyme Q10 (CoQ10) are novel antioxidants and anti-inflammatory agents.

Purpose

The objective of this study was to determine the impact of oral supplementation with vitamin B12 and CoQ10, in attenuating deleterious effects associated with alcohol exposure in Swiss albino mice.

Methods

Group one was normal control, the second group received 5 g/kg alcohol; the third group received 6 mg/kg b/w of vitamin B12 and 5 g/kg alcohol; the fourth group received 6 mg/kg b/w of vitamin B12, 200 mg/kg b/w CoQ10, and 5 g/kg alcohol, the fifth group 200 mg/kg b/w of CoQ10 and 5 g/kg alcohol.

Results

Oral administration of vitamin B12 and CoQ10 alone or in combination significantly ameliorated alcohol-induced impairment of hematological parameters and stabilized alcohol-induced alteration of the lipid profile. Notably, administration of either vitamin B12 or CoQ10 significantly blocked alcohol-induced depletion of reduced glutathione levels. Furthermore, vitamin B12 and CoQ10 stabilized the levels of pro-inflammatory cytokines (TNF-α and IFN-γ) when administered alone or in combination. Remarkably, the administration of CoQ10 and vitamin B12 significantly attenuated alcohol-induced liver and kidney inflammation and pathology.

Conclusion

Administration of either vitamin B12 or CoQ10 alone or in combination can protect from the toxic effects of chronic alcohol exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

All data generated and analyzed from this study are included in this manuscript or are available through the corresponding author upon request.

References

  1. World Health Organization (WHO). Alcohol. 2018. https://www.who.int/news-room/factsheets/detail/alcohol

  2. Gao HY, Huang J, Wang HY, Du XW, Cheng SM, Han Y, Wang LF, Li GY, Wang JH. Protective effect of Zhuyeqing liquor, a Chinese traditional health liquor, on acute alcohol-induced liver injury in mice. J Inflamm. 2013;10(1):30. https://doi.org/10.1186/1476-9255-10-30.

    Article  Google Scholar 

  3. Ikram M, Saeed K, Khan A, Muhammad T, Khan MS, Jo MG, Rehman SU, Kim MO. Natural dietary supplementation of curcumin protects mice brains against ethanol-induced oxidative stress-mediated neurodegeneration and memory impairment via Nrf2/TLR4/RAGE signaling. Nutrients. 2019;11(5):1082. https://doi.org/10.3390/nu11051082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9–19. https://doi.org/10.1097/WOX.0b013e3182439613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hernández JA, López-Sánchez RC, Rendón-Ramírez A. Lipids and oxidative stress associated with ethanol-induced neurological damage. Oxid Med Cell Longev. 2016;2016:1543809. https://doi.org/10.1155/2016/1543809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Souli A, Sebai H, Chehimi L, Rtibi K, Tounsi H, Boubaker S, Sakly M, El-Benna J, Amri M. Hepatoprotective effect of carob against acute ethanol-induced oxidative stress in rat. Toxicol Ind Health. 2015;31(9):802–10. https://doi.org/10.1177/0748233713475506.

    Article  CAS  PubMed  Google Scholar 

  7. Song Z, Deaciuc I, Song M, Lee DY, Liu Y, Ji X, McClain C. Silymarin protects against acute ethanol-induced hepatotoxicity in mice. Alcohol Clin Exp Res. 2006;30(3):407–13. https://doi.org/10.1111/j.1530-0277.2006.00063.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gavala A, Myrianthefs P, Venetsanou K, Baltopoulos,G, Alevizopoulos G. Alcohol effects on TNF-α and IL-10 production in an ex-vivo model of whole blood stimulated by LPS. Journal of Psychiatry. 2015; 18(6). https://doi.org/10.4172/2378-5756.1000339.

  9. D’Souza El-Guindy NB, de Villiers WJ, Doherty DE. Acute alcohol intake impairs lung inflammation by changing pro- and anti-inflammatory mediator balance. Alcohol. 2007;41(5):335–45. https://doi.org/10.1016/j.alcohol.2007.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meikle PJ, Mundra PA, Wong G, Rahman K, Huynh K, Barlow CK, Duly AM, Haber PS, Whitfield JB, Seth D. Circulating lipids are associated with alcoholic liver cirrhosis and represent potential biomarkers for risk assessment. PLoS One. 2015;10(6):e0130346. https://doi.org/10.1371/journal.pone.0130346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gillessen A, Schmidt HH. Silymarin as supportive treatment in liver diseases: a narrative review. Adv Ther. 2020;37(4):1279–301. https://doi.org/10.1007/s12325-020-01251-y.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Atef MM, Hafez YM, Alshenawy HA, Emam MN. Ameliorative effects of autophagy inducer, simvastatin on alcohol-induced liver disease in a rat model. J Cell Biochem. 2018 https://doi.org/10.1002/jcb.28042

  13. Zhou T, Zhang YJ, Xu DP, Wang F, Zhou Y, Zheng J, Li Y, Zhang JJ, Li HB. Protective effects of lemon juice on alcohol-induced liver injury in mice. Biomed Res Int. 2017;2017:7463571. https://doi.org/10.1155/2017/7463571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hargreaves I, Mantle D, Milford D. Chronic kidney disease and coenzyme Q10 supplementation. J Ren Care. 2019;4(2):82–90. https://doi.org/10.12968/jokc.2019.4.2.82.

    Article  Google Scholar 

  15. Nyariki JN, Ochola LA, Jillani NE, Nyamweya NO, Amwayi PE, Yole DS, Azonvide L, Isaac AO. Oral administration of coenzyme Q10 protects mice against oxidative stress and neuro-inflammation during experimental cerebral malaria. Parasitol Int. 2019;71:106–20. https://doi.org/10.1016/j.parint.2019.04.010.

    Article  CAS  PubMed  Google Scholar 

  16. Hajihashemi S, Hamidizad Z, Rahbari A, Ghanbari F, Motealeghi ZA. Effects of cobalamin (vitamin B12) on gentamicin induced nephrotoxicity in rat. Drug Res. 2017;67(12):710–8. https://doi.org/10.1055/s-0043-117418.

    Article  CAS  Google Scholar 

  17. van de Lagemaat EE, de Groot LCPGM, van den Heuvel EGHM. Vitamin B12 in relation to oxidative stress: a systematic review. Nutrients. 2019;11(2):482. https://doi.org/10.3390/nu11020482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. El-Zayat SR, Sibaii H, Mannaa FA. Micronutrients and many important factors that affect the physiological functions of toll-like receptors. Bull Natl Res Cent. 2019;43:123. https://doi.org/10.1186/s42269-019-0165-z.

    Article  Google Scholar 

  19. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Obernier JA, Baldwin RL. Establishing an appropriate period of acclimatization following transportation of laboratory animals. ILAR J. 2006;47(4):364–9. https://doi.org/10.1093/ilar.47.4.364.

    Article  CAS  PubMed  Google Scholar 

  21. Matthews RT, Yang L, Browne S, Baik M, Beal MF. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A. 1998;95(15):8892–7. https://doi.org/10.1073/pnas.95.15.8892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nyariki JN, Thuita JK, Wambugu AM, Nyamweya NO, Rashid K, Nyambati GK, Isaac AO. Coenzyme Q10 and endogenous antioxidants neuro-protect mice brain against deleterious effects of melarsoprol and Trypanasoma brucei rhodesiense. J Nat Sci Res. 2018; (4): 1–9. https://www.iiste.org/Journals/index.php/JNSR/article/view/41230

  23. Mirmalek SA, GholamrezaeiBoushehrinejad A, Yavari H, Kardeh B, Parsa Y, Salimi-Tabatabaee SA, Yadollah-Damavandi S, Parsa T, Shahverdi E, Jangholi E. Antioxidant and anti-inflammatory effects of coenzyme Q10 on L-arginine-induced acute pancreatitis in rat. Oxid Med Cell Longev. 2016;2016:5818479. https://doi.org/10.1155/2016/5818479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rashid K, Wachira FN, Nyariki JN, Isaac AO. Kenyan purple tea anthocyanins and coenzyme-Q10 ameliorate post treatment reactive encephalopathy associated with cerebral human African trypanosomiasis in murine model. Parasitol Int. 2014;63(2):417–26. https://doi.org/10.1016/j.parint.2014.01.001.

    Article  CAS  PubMed  Google Scholar 

  25. Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc. 2006;1(6):3159–65. https://doi.org/10.1038/nprot.2006.378.

    Article  CAS  PubMed  Google Scholar 

  26. Xu Z, Huo J, Ding X, Yang M, Li L, Dai J, Hosoe K, Kubo H, Mori M, Higuchi K, Sawashita J. Coenzyme Q10 improves lipid metabolism and ameliorates obesity by regulating CaMKII-mediated PDE4 inhibition. Sci Rep. 2017;7(1):8253. https://doi.org/10.1038/s41598-017-08899-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blaner WS, Gao MA, Jiang H, Dalmer TR, Hu XJ, Ginsberg HN, Clugston RD. Chronic alcohol consumption decreases brown adipose tissue mass and disrupts thermoregulation: a possible role for altered retinoid signaling. Sci Rep. 2017;7:43474. https://doi.org/10.1038/srep43474.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen SC, Chang CY, Lin ML. Vascular hyperpermeability response in animals systemically exposed to arsenic. Int J Med Sci. 2018;15(5):425–9. https://doi.org/10.7150/ijms.23480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Carbrey JM, Song L, Zhou Y, Yoshinaga M, Rojek A, Wang Y, Liu Y, Lujan HL, DiCarlo SE, Nielsen S, Rosen BP, Agre P, Mukhopadhyay R. Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice. Proc Natl Acad Sci U S A. 2009;106(37):15956–60. https://doi.org/10.1073/pnas.0908108106.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Maronpot RR, Yoshizawa K, Nyska A, Harada T, Flake G, Mueller G, Botts S. Liver enlargement-STP regulatory policy papers: hepatic enzyme induction: Histopathology. Toxicol Pathol. 2010;38(5):776–95. https://doi.org/10.1177/2F0192623310373778.

    Article  CAS  PubMed  Google Scholar 

  31. Craig EA, Yan Z, Zhao QJ. The relationship between chemical-induced kidney weight increases and kidney histopathology in rats. J Appl Toxicol. 2015;35(7):729–36. https://doi.org/10.1002/jat.3036.

    Article  CAS  PubMed  Google Scholar 

  32. Bolognesi M, Merkel C, Sacerdoti D, Nava V, Gatta A. Role of spleen enlargement in cirrhosis with portal hypertension. Dig Liver Dis. 2002;34(2):144–50. https://doi.org/10.1016/s1590-8658(02)80246-8.

    Article  CAS  PubMed  Google Scholar 

  33. Bliznakov EG. Effect of stimulation of the host defense system by coenzyme Q 10 on dibenzpyrene-induced tumors and infection with Friend leukemia virus in mice. Proc Natl Acad Sci U S A. 1973;70(2):390–4. https://doi.org/10.1073/pnas.70.2.390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oyedeji KO. Effect of alcohol consumption on haematological and reproductive parameters in female albino rats. J Med Dent Sci. 2013;3(5):76–9. https://doi.org/10.9790/0853-0357679.

    Article  Google Scholar 

  35. Gonzalez-Casas R, Jones EA, Moreno-Otero R. Spectrum of anemia associated with chronic liver disease. World J Gastroenterol. 2009;15(37):4653–8. https://doi.org/10.3748/wjg.15.4653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kokavec A, Crowe SF. Alcohol consumption in the absence of adequate nutrition may lead to activation of the glyoxylate cycle in man. Med Hypotheses. 2002;58(5):411–5. https://doi.org/10.1054/mehy.2001.1524.

    Article  CAS  PubMed  Google Scholar 

  37. George A, Pushkaran S, Konstantinidis DG, Koochaki S, Malik P, Mohandas N, Zheng Y, Joiner CH, Kalfa TA. Erythrocyte NADPH oxidase activity modulated by Rac GTPases, PKC, and plasma cytokines contributes to oxidative stress in sickle cell disease. Blood. 2013;121(11):2099–107. https://doi.org/10.1182/blood-2012-07-441188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kennedy C, Okanya P, Nyariki JN, Amwayi P, Jillani N, Isaac AO. Coenzyme Q10 nullified khat-induced hepatotoxicity, nephrotoxicity and inflammation in a mouse model. Heliyon. 2020;6(9):e04917. https://doi.org/10.1016/j.heliyon.2020.e04917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mwaeni VK, Nyariki JN, Jillani N, Omwenga G, Ngugi M, Isaac AO. Coenzyme Q10 protected against arsenite and enhanced the capacity of 2,3-dimercaptosuccinic acid to ameliorate arsenite-induced toxicity in mice. BMC Pharmacol Toxicol. 2021;22(1):19. https://doi.org/10.1186/s40360-021-00484-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Molina V, Medici M, Taranto MP, Font de Valdez G. Effects of maternal vitamin B12 deficiency from end of gestation to weaning on the growth and haematological and immunological parameters in mouse dams and offspring. Arch Anim Nutr. 2008;62(2):162–8. https://doi.org/10.1080/17450390801892567.

    Article  CAS  PubMed  Google Scholar 

  41. Kawashima Y, Someya Y, Shirato K, Sato S, Ideno H, Kobayashi K, Tachiyashiki K, Imaizumi K. Single administration effects of ethanol on the distribution of white blood cells in rats. J Toxicol Sci. 2011;36(3):347–55. https://doi.org/10.2131/jts.36.347.

    Article  CAS  PubMed  Google Scholar 

  42. Seitz HK, Bataller R, Cortez-Pinto H, Gao B, Gual A, Lackner C, Mathurin P, Mueller S, Szabo G, Tsukamoto H. Alcoholic liver disease Nature reviews. Dis Prim. 2018;14(1):1–22. https://doi.org/10.1038/s41572-018-0014-7.

    Article  Google Scholar 

  43. Das SK, Vasudevan DM. Alcohol-induced oxidative stress. Life Sci. 2007;81(3):177–87. https://doi.org/10.1016/j.lfs.2007.05.005.

    Article  CAS  PubMed  Google Scholar 

  44. Aldahmash BA, El-nagar DM. Histological study on the hazardous effects of ethanol on liver and spleen in Swiss albino mice. 2013;7(8):2445–52. https://doi.org/10.1096/fasebj.27.1_supplement.lb538.

    Article  Google Scholar 

  45. Zhang YJ, Zhou T, Wang F, Zhou Y, Li Y, Zhang JJ, Zheng J, Xu DP, Li HB. The effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on alcohol-induced liver injury. Int J Mol Sci. 2016;17(10):1616. https://doi.org/10.3390/ijms17101616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen Y, Singh S, Matsumoto A, Manna SK, Abdelmegeed MA, Golla S, Murphy RC, Dong H, Song BJ, Gonzalez FJ, Thompson DC, Vasiliou V. Chronic glutathione depletion confers protection against alcohol-induced steatosis: implication for redox activation of AMP-activated protein kinase pathway. Sci Rep. 2016;6:29743. https://doi.org/10.1038/srep29743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kołota A, Głąbska D, Oczkowski M, Gromadzka-Ostrowska J. Influence of alcohol consumption on body mass gain and liver antioxidant defense in adolescent growing male rats. Int J Environ Res Public Health. 2019;16(13):2320. https://doi.org/10.3390/ijerph16132320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Saravanan T, Shanmugapriya S, Sumitra G, Dhayananth R. S, Saravanan A, Vasuki A. K. M. Hepato-protective effect of folic acid and vitamin B12 in comparison to N-acetylcysteine in experimentally induced acetaminophen toxicity in rats. Biomed Pharmacol J 2017; 10(2). http://biomedpharmajournal.org/?p=15463

  49. Marques AC, Busanello ENB, de Oliveira DN, Catharino RR, Oliveira HCF, Vercesi AE. Coenzyme Q10 or creatine counteract pravastatin-induced liver redox changes in hypercholesterolemic mice. Front Pharmacol. 2018;9:685. https://doi.org/10.3389/fphar.2018.00685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saribal D, Hocaoglu-Emre FS, Karaman F, Mırsal H, Akyolcu MC. Trace element levels and oxidant/antioxidant status in patients with alcohol abuse. Biol Trace Elem Res. 2020;193(1):7–13. https://doi.org/10.1007/s12011-019-01681-y.

    Article  CAS  PubMed  Google Scholar 

  51. Small DM, Beetham KS, Howden EJ, Briskey DR, Johnson DW, Isbel NM, Gobe GC, Coombes JS. Effects of exercise and lifestyle intervention on oxidative stress in chronic kidney disease. Redox Rep. 2017;22(3):127–36. https://doi.org/10.1080/13510002.2016.1276314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jeong WI, Park O, Gao B. Abrogation of the antifibrotic effects of natural killer cells/interferon-gamma contributes to alcohol acceleration of liver fibrosis. Gastroenterol. 2008;134(1):248–58. https://doi.org/10.1053/j.gastro.2007.09.034.

    Article  CAS  Google Scholar 

  53. Chen D, Zhang F, Ren H, Luo J, Wang S. Role of cytokines and chemokines in alcohol-induced tumor promotion. Onco Targets Ther. 2017;10:1665–71. https://doi.org/10.2147/OTT.S129781.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Neupane SP, Skulberg A, Skulberg KR, Aass HC, Bramness JG. Cytokine changes following acute ethanol intoxication in healthy men: a crossover study. Mediators Inflamm. 2016;2016:3758590. https://doi.org/10.1155/2016/3758590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tripathi D, Welch E, Cheekatla SS, Radhakrishnan RK, Venkatasubramanian S, Paidipally P, Van A, Samten B, Devalraju KP, Neela VSK, Valluri VL, Mason C, Nelson S, Vankayalapati R. Alcohol enhances type 1 interferon-α production and mortality in young mice infected with Mycobacterium tuberculosis. PLoS Pathog. 2018;14(8):e1007174. https://doi.org/10.1371/journal.ppat.1007174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhai J, Bo Y, Lu Y, Liu C, Zhang L. Effects of coenzyme Q10 on markers of inflammation: a systematic review and meta-analysis. PLoS One. 2017;12(1):e0170172. https://doi.org/10.1371/journal.pone.0170172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Al-Daghri NM, Rahman S, Sabico S, Yakout S, Wani K, Al-Attas OS, Saravanan P, Tripathi G, McTernan PG, Alokail MS. Association of vitamin B12 with pro-inflammatory cytokines and biochemical markers related to cardiometabolic risk in Saudi subjects. Nutrients. 2016;8(9):460. https://doi.org/10.3390/nu8090460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Song MH, Kim HN, Lim Y, Jang IS. Effects of coenzyme Q10 on the antioxidant system in SD rats exposed to lipopolysaccharide-induced toxicity. Lab Anim Res. 2017;33(1):24–31. https://doi.org/10.5625/lar.2017.33.1.24.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ahmad A, Afroz N, Gupta UD, Ahmad R. Vitamin B12 supplement alleviates N'-nitrosodimethylamine-induced hepatic fibrosis in rats. Pharm Biol. 2014https://doi.org/10.3109/13880209.2013.864682

  60. Isoda K, Kagaya N, Akamatsu S, Hayashi S, Tamesada M, Watanabe A, Kobayashi M, Tagawa Y, Kondoh M, Kawase M, Yagi K. Hepatoprotective effect of vitamin B12 on dimethylnitrosamine-induced liver injury. Biol Pharm Bull. 2008;31(2):309–11. https://doi.org/10.1248/bpb.31.309.

    Article  CAS  PubMed  Google Scholar 

  61. Li YG, Ji DF, Chen S, Hu GY. Protective effects of sericin protein on alcohol-mediated liver damage in mice. Alcohol Alcohol. 2008;43(3):246–53. https://doi.org/10.1093/alcalc/agm164.

    Article  CAS  PubMed  Google Scholar 

  62. Chung FM, Yang YH, Shieh TY, Shin SJ, Tsai JC, Lee YJ. Effect of alcohol consumption on estimated glomerular filtration rate and creatinine clearance rate. Nephrol Dial Transplant. 2005;20(8):1610–6. https://doi.org/10.1093/ndt/gfh842.

    Article  CAS  PubMed  Google Scholar 

  63. Islam M, Hossain M, Wares M. Kidney histotexure and serum creatinine level in response to concurrent administration of alcohol and coffee in mice. Bangladesh Vet. 2016;32(2):42–7. https://doi.org/10.3329/bvet.v32i2.30609.

    Article  Google Scholar 

  64. Leal S, Ricardo Jorge DO, Joana B, Maria SS, Isabel SS. Heavy alcohol consumption effects on blood pressure and on kidney structure persist after long-term withdrawal. Kidney Blood Press Res. 2017;42(4):664–75. https://doi.org/10.1159/000482022.

    Article  CAS  PubMed  Google Scholar 

  65. Hassan SM, Saeed AK, Hussein AJ. Ethanol-induced hepatic and renal histopathological changes in BALB/c mice. 2016; 5:12–20. https://www.iiste.org/Journals/index.php/JNSR/article/view/22588

  66. Mahfoz AM. Renal protective effects of coenzyme Q10 against chromate induced nephrotoxicity in rats. Renal Protective Effects of Coenzyme Q10 Against Chromate Induced Nephrotoxicity in Rats. Am Heart J. 2021;242:146–7. https://doi.org/10.1016/j.ahj.2021.10.004.

    Article  Google Scholar 

  67. Fouad AA, Jresat I. Hepatoprotective effect of coenzyme Q10 in rats with acetaminophen toxicity. Environ Toxicol Pharmacol. 2012;33(2):158–67. https://doi.org/10.1016/j.etap.2011.12.011.

    Article  CAS  PubMed  Google Scholar 

  68. Hamid A, Ibrahim FW, Ming TH, Nasrom MN, Eusoff N, Husain K, Abdul Latif M. Zingiber zerumbet L. (Smith) extract alleviates the ethanol-induced brain damage via its antioxidant activity. BMC Complement Altern Med. 2018;18(1):101. https://doi.org/10.1186/s12906-018-2161-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun AY, Simonyi A, Sun GY. The “French Paradox” and beyond: neuroprotective effects of polyphenols. Free Radic Biol Med. 2002;32(4):314–8. https://doi.org/10.1016/s0891-5849(01)00803-6.

    Article  CAS  PubMed  Google Scholar 

  70. Cleren C, Yang L, Lorenzo B, Calingasan NY, Schomer A, Sireci A, Wille EJ, Beal MF. Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of Parkinsonism. J Neurochem. 2008;104(6):1613–21. https://doi.org/10.1111/j.1471-4159.2007.05097.x.

    Article  CAS  PubMed  Google Scholar 

  71. Greco D, Battista S, Mele L, Piemontese A, Papotti B, Cavazzini S, Potì F, Di Rocco G, Poli A, Bernini F, Zanotti I. Alcohol pattern consumption differently affects the efficiency of macrophage reverse cholesterol transport in vivo. Nutrients. 2018;10(12):1885. https://doi.org/10.3390/nu10121885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are indebted to The World Academy of Sciences and Kenya National Innovation Agency. Bio-reagents and chemicals purchased using funds from these organizations supported this research.

Author information

Authors and Affiliations

Authors

Contributions

BK, VKM, and JNN performed experiments; BK, GO, and JNN analyzed and interpreted the experimental results; AOI provided the laboratory facility and helped in the designing of experimental procedures BK wrote the manuscript. MG, MG, AOI, and JNN edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to James Nyabuga Nyariki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All experimental procedures and protocols involving mice were reviewed by the Institutional Review for approval Committee (IRC) of the Institute of Primate Research Karen, Kenya (ISERC/08/2017). All experiments were conducted in compliance with the recommendations of the Helsinki Declaration on guiding principles on the care and use of animals.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kipchumba, B., Isaac, A.O., Mwaeni, V.K. et al. Vitamin B12 and coenzyme Q10 ameliorated alcohol-driven impairment of hematological parameters, inflammation, and organ damage in a mouse model. Nutrire 48, 13 (2023). https://doi.org/10.1186/s41110-023-00197-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-023-00197-9

Keywords

Navigation