Skip to main content

Advertisement

Log in

Short sleep duration and food intake: an overview and analysis of the influence of the homeostatic and hedonic system

  • Review
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Purpose

Explore the different mechanisms that support the effect of short sleep duration on food intake.

Methods

This is a narrative review made with articles from the PubMed/MEDLINE database using the following MeSH terms: “sleep,” “eating,” “appetite regulation,” and “obesity.”

Results

From this search, 2883 articles were found. Among them, 63 articles were selected based on the title. Then, the abstract was read, and 42 studies were excluded, and, therefore, 21 studies were obtained from the search by PubMed and 25 articles obtained by hand search. Finally, 46 articles comprised this review. Homeostatic, is the main mechanism related to short sleep duration and food intake, which consists of ghrelin increase and leptin decrease. However, some studies, even with these hormonal changes, did not observe an increase in food intake, and other, even if they did not observe any hormonal changes, verify an increase in food intake. This result seems to be attributed to the hedonic system, which controls the reward mechanisms.

Conclusion

Short sleep duration increases food intake; however, it is unclear which major mechanism determines this phenomenon. It is believed that these systems interact, contributing to food intake increases and worsening food choices, which, over time, seems to contribute to the positive energy balance and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CVS:

cardiovascular disease

SAH:

systemic arterial hypertension

DM:

diabetes mellitus

OSAS:

obstructive sleep apnea syndrome

BMI:

body mass index

n:

number

m2 :

square meters

am:

morning

pm:

afternoon

kg:

kilogram

h:

hour

DA:

dopamine

References

  1. Grandner MA, Chakravorty S, Perlis ML, Oliver L, Gurubhagavatula I. Habitual sleep duration associated with self-reported and objectively determined cardiometabolic risk factors. Sleep Med. 2014;15(1):42–50. https://doi.org/10.1016/j.sleep.2013.09.012.

    Article  PubMed  Google Scholar 

  2. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. National sleep foundation’s sleep time duration recommendations: methodology and results summary. Sleep Heal. 2015;1(1):40–3. https://doi.org/10.1016/j.sleh.2014.12.010.

    Article  Google Scholar 

  3. Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, Buysse D, et al. Joint consensus statement of the American Academy of sleep medicine and Sleep Research Society on the recommended amount of sleep for a healthy adult: methodology and discussion. J Clin Sleep Med. 2015;38(8):1161–83. https://doi.org/10.5664/jcsm.4950.

    Article  Google Scholar 

  4. Wendt A, Costa CS, Machado AKF, Costa FS, Neves RG, Flores TR, et al. Sleep disturbances and daytime fatigue: data from the Brazilian national health survey, 2013. Cad Saude Publica. 2019;35:e00086918. https://doi.org/10.1590/0102-311x00086918.

    Article  PubMed  Google Scholar 

  5. Boulos MI, Jairam T, Kendzerska T, Im J, Mekhael A, Murray BJ (2019) Normal polysomnography parameters in healthy adults: a systematic review and meta-analysis. Lancet Respir Med 7(6):533–543. https://doi.org/10.1016/S2213-2600(19)30057-8.

  6. Zhou Q, Zhang M, Hu D. Dose-response association between sleep duration and obesity risk: a systematic review and meta-analysis of prospective cohort studies. Sleep Breath. 2019;23:1–11. https://doi.org/10.1007/s11325-019-01824-4.

    Article  Google Scholar 

  7. Chaput JP, Després JP, Bouchard C, Tremblay A. Short sleep duration is associated with reduced leptin levels and increased adiposity: results from the Québec family study. Obesity. 2007;15(1):253–61. https://doi.org/10.1038/oby.2007.512.

    Article  CAS  PubMed  Google Scholar 

  8. Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, et al. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci U S A. 2013;110(14):5695–700. https://doi.org/10.1073/pnas.1216951110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Patel SR, Malhotra A, White DP, Gottlieb DJ, Hu FB. Association between reduced sleep and weight gain in women. Am J Epidemiol. 2006;164(10):947–54. https://doi.org/10.1093/aje/kwj280.

    Article  PubMed  Google Scholar 

  10. Spaeth AM, Dinges DF, Goel N. Sex and race differences in caloric intake during sleep restriction in healthy adults. Am J Clin Nutr. 2014;100(2):559–66. https://doi.org/10.3945/ajcn.114.086579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiao Q, Arem H, Moore SC, Hollenbeck AR, Matthews CE (2013) A large prospective investigation of sleep duration,weight change, and obesity in the NIH-AARP diet and health study cohort. Am J Epidemiol 178(11):1600–1610. https://doi.org/10.1093/aje/kwt180, A large prospective investigation of sleep duration, weight change, and obesity in the NIH-AARP Diet and Health Study cohort.

  12. Gipson K, Lu M, Kinane TB. Sleep-disordered breathing in children. Pediatr Rev. 2019. https://doi.org/10.1542/pir.2018-0142.

  13. Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10. https://doi.org/10.1016/j.metabol.2018.09.005.

    Article  CAS  PubMed  Google Scholar 

  14. Buxton OM, Marcelli E. Short and long sleep are positively associated with obesity, diabetes, hypertension, and cardiovascular disease among adults in the United States. Soc Sci Med. 2010;71(5):1027–36. https://doi.org/10.1016/j.socscimed.2010.05.041.

    Article  PubMed  Google Scholar 

  15. Kinuhata S, Hayashi T, Sato KK, Uehara S, Oue K, Endo G, et al. Sleep duration and the risk of future lipid profile abnormalities in middle-aged men: the Kansai healthcare study. Sleep Med. 2014;15(11):1379–85. https://doi.org/10.1016/j.sleep.2014.06.011.

    Article  PubMed  Google Scholar 

  16. Song SO, He K, Narla RR, Kang HG, Ryu HU, Boyko EJ. Metabolic consequences of obstructive sleep apnea especially pertaining to diabetes mellitus and insulin sensitivity. Diabetes Metab J. 2019;43(2):144–55. https://doi.org/10.4093/dmj.2018.0256.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Irwin MR, Carrillo C, Olmstead R. Sleep loss activates cellular markers of inflammation: sex differences. Brain Behav Immun. 2010;24(1):54–7. https://doi.org/10.1016/j.bbi.2009.06.001.

    Article  CAS  PubMed  Google Scholar 

  18. Mullington JM, Simpson NS, Meier-Ewert HK, Haack M. Sleep loss and inflammation. Best Pract Res Clin Endocrinol Metab. 2010;24(5):775–84. https://doi.org/10.1016/j.beem.2010.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Riemann D, Krone LB, Wulff K. Nissen C (2019) sleep, insomnia, and depression. Neuropsychopharmacology. 2019;45:74–89. https://doi.org/10.1038/s41386-019-0411-y.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Richmond RC, Anderson EL, Dashti HS, Jones SE, Lane JM, Strand LB, et al. Investigating causal relations between sleep traits and risk of breast cancer in women: Mendelian randomisation study. BMJ. 2019;365:12327. https://doi.org/10.1136/bmj.l2327.

    Article  Google Scholar 

  21. Irwin MR. Why sleep is important for health: a psychoneuroimmunology perspective. Annu Rev Psychol. 2015;66:143–72. https://doi.org/10.1146/annurev-psych-010213-115205.

    Article  PubMed  Google Scholar 

  22. Dashti HS, Scheer FA, Jacques PF, Lamon-Fava S, Ordovás JM. Short sleep duration and dietary intake: epidemiologic evidence, mechanisms, and health implications. Adv Nutr. 2015;6(6):648–59. https://doi.org/10.3945/an.115.008623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chaput JP. Sleep patterns, diet quality and energy balance. Physiol Behav. 2014;134:86–91. https://doi.org/10.1016/j.physbeh.2013.09.006.

    Article  CAS  PubMed  Google Scholar 

  24. Arble DM, Bass J, Behn CD, Butler MP, Challet E, Czeisler C, et al. Impact of sleep and circadian disruption on energy balance and diabetes: a summary of workshop discussions. Sleep. 2015;38(12):1849–60. https://doi.org/10.5665/sleep.5226.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern. 2004;141(11):846–50. https://doi.org/10.7326/0003-4819-141-11-200412070-00008.

    Article  Google Scholar 

  26. Taheri S, Lin L, Austin D, Young T, Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004;1(3):e62. https://doi.org/10.1371/journal.pmed.0010062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bosy-Westphal A, Hinrichs S, Jauch-Chara K, Hitze B, Later W, Wilms B, et al. Influence of partial sleep deprivation on energy balance and insulin sensitivity in healthy women. Obes Facts. 2008;1(5):266–73. https://doi.org/10.1159/000158874.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD. Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr. 2009;89(1):126–33. https://doi.org/10.3945/ajcn.2008.26574.

    Article  CAS  PubMed  Google Scholar 

  29. Schmid SM, Hallschmid M, Jauch-Chara K, Born J, Schultes B. A single night of sleep deprivation increases ghrelin levels and feelings of hunger in normal-weight healthy men. J Sleep Res. 2008;17(3):331–4. https://doi.org/10.1111/j.1365-2869.2008.00662.x.

    Article  PubMed  Google Scholar 

  30. Schmid SM, Hallschmid M, Jauch-Chara K, Wilms B, Benedict C, Lehnert H, et al. Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr. 2009;90(6):1476–82. https://doi.org/10.3945/ajcn.2009.27984.

    Article  CAS  PubMed  Google Scholar 

  31. Brondel L, Romer MA, Nougues PM, Touyarou P, Davenne D. Acute partial sleep deprivation increases food intake in healthy men. Am J Clin Nutr. 2010;91(6):1550–9. https://doi.org/10.3945/ajcn.2009.28523.

    Article  CAS  PubMed  Google Scholar 

  32. Kim S, Deroo LA, Sandler DP. Eating patterns and nutritional characteristics associated with sleep duration. Public Health Nutr. 2011;14(5):889–95. https://doi.org/10.1017/S136898001000296X.

    Article  PubMed  Google Scholar 

  33. St-Onge MP, Roberts AL, Chen J, Kelleman M, O’Keeffe M, RoyChoudhury A, et al. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr. 2011;94(2):410–6. https://doi.org/10.3945/ajcn.111.013904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Benedict C, Brooks SJ, O’Daly OG, Almèn MS, Morell A, Åberg K, et al. Acute sleep deprivation enhances the brain’s response to hedonic food stimuli: an fMRI study. J Clin Endocrinol Metab. 2012;97(3):E443–7. https://doi.org/10.1210/jc.2011-2759.

    Article  CAS  PubMed  Google Scholar 

  35. St-Onge M-P, O’Keeffe M, Roberts AL, RoyChoudhury A, Laferrère B. Short sleep duration, glucose Dysregulation and hormonal regulation of appetite in men and women. Sleep. 2012;35(11):1503–10. https://doi.org/10.5665/sleep.2198.

    Article  PubMed  PubMed Central  Google Scholar 

  36. St-Onge MP, McReynolds A, Trivedi ZB, Roberts AL, Sy M, Hirsch J. Sleep restriction leads to increased activation of brain regions sensitive to food stimuli. Am J Clin Nutr. 2012;95(4):818–24. https://doi.org/10.3945/ajcn.111.027383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Calvin AD, Carter RE, Adachi T, MacEdo PG, Albuquerque FN, Van Der Walt C, et al. Effects of experimental sleep restriction on caloric intake and activity energy expenditure. Chest. 2013;144(1):79–86. https://doi.org/10.1378/chest.12-2829.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Greer SM, Goldstein AN, Walker MP. The impact of sleep deprivation on food desire in the human brain. Nat Commun. 2013;4:2259. https://doi.org/10.1038/ncomms3259.

    Article  CAS  PubMed  Google Scholar 

  39. Spaeth AM, Dinges DF, Goel N. Effects of experimental sleep restriction on weight gain, caloric intake, and meal timing in healthy adults. Sleep. 2013;36(7):981–90. https://doi.org/10.5665/sleep.2792.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kant AK, Graubard BI. Association of self-reported sleep duration with eating behaviors of American adults: NHANES 2005-2010. Am J Clin Nutr. 2014;100(3):938–47. https://doi.org/10.3945/ajcn.114.085191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. St-Onge MP, Wolfe S, Sy M, Shechter A, Hirsch J. Sleep restriction increases the neuronal response to unhealthy food in normal-weight individuals. Int J Obes. 2014;38(3):411–6. https://doi.org/10.1038/ijo.2013.114.

    Article  Google Scholar 

  42. Mossavar-Rahmani Y, Jung M, Patel SR, Sotres-Alvarez D, Arens R, Ramos A, et al. Eating behavior by sleep duration in the Hispanic community health study/study of Latinos. Appetite. 2015;95:275–84. https://doi.org/10.1016/j.appet.2015.07.014.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Doo H, Chun H, Doo M. Associations of daily sleep duration and dietary macronutrient consumption with obesity and dyslipidemia in Koreans a cross-sectional study. Med (United States). 2016;95(45):e5360. https://doi.org/10.1097/MD.0000000000005360.

    Article  CAS  Google Scholar 

  44. Hibi M, Kubota C, Mizuno T, Aritake S, Mitsui Y, Katashima M, et al. Effect of shortened sleep on energy expenditure, core body temperature, and appetite: a human randomised crossover trial. Sci Rep. 2017;7:39640–11. https://doi.org/10.1038/srep39640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gębski J, Jezewska-Zychowicz M, Guzek D, Świątkowska M, Stangierska D, Plichta M. The associations between dietary patterns and short sleep duration in polish adults (LifeStyle study). Int J Environ Res Public Health. 2018;15(11):2497. https://doi.org/10.3390/ijerph15112497.

    Article  CAS  PubMed Central  Google Scholar 

  46. Egecioglu E, Skibicka KP, Hansson C, Alvarez-Crespo M, Anders Friberg P, Jerlhag E, et al. Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord. 2011;12(3):141–51. https://doi.org/10.1007/s11154-011-9166-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lutter M, Nestler EJ. Homeostatic and hedonic signals interact in the regulation of food intake. J Nutr. 2009;139(3):629–32. https://doi.org/10.3945/jn.108.097618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Melo CM, del Re MP, dos Santos Quaresma MVL, Moreira Antunes HK, Togeiro SM, Lima Ribeiro SM, et al. Relationship of evening meal with sleep quality in obese individuals with obstructive sleep apnea. Clin Nutr ESPEN. 2019;29:231–6. https://doi.org/10.1016/j.clnesp.2018.09.077.

    Article  PubMed  Google Scholar 

  49. Takahashi M, Ozaki M, Kang M Il, Sasaki H, Fukazawa M, Iwakami T, et al (2018) Effects of meal timing on postprandial glucose metabolism and blood metabolites in healthy adults. Nutrients 10(11):1763. https://doi.org/10.3390/nu10111763.

  50. Versteeg RI, Ackermans MT, Nederveen AJ, Fliers E, Serlie MJ, La Fleur SE. Meal timing effects on insulin sensitivity and intrahepatic triglycerides during weight loss. Int J Obes. 2018;42(2):156–62. https://doi.org/10.1038/ijo.2017.199.

    Article  CAS  Google Scholar 

  51. Coccurello R, Maccarrone M. Hedonic eating and the “delicious circle”: from lipid-derived mediators to brain dopamine and back. Front Neurosci. 2018;12:271. https://doi.org/10.3389/fnins.2018.00271.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bassareo V, Gambarana C. Editorial: food and its effect on the brain: from physiological to compulsive consumption. Front Psychiatry. 2019;10:209. https://doi.org/10.3389/fpsyt.2019.00209.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bragulat V, Dzemidzic M, Bruno C, Cox CA, Talavage T, Considine RV, et al. Food-related odor probes of brain reward circuits during hunger: a pilot FMRI study. Obesity (Silver Spring). 2010;18(8):1566–71. https://doi.org/10.1038/oby.2010.57.

    Article  Google Scholar 

  54. Pelchat ML, Johnson A, Chan R, Valdez J, Ragland JD. Images of desire: food-craving activation during fMRI. Neuroimage. 2004;23(4):1486–93. https://doi.org/10.1016/j.neuroimage.2004.08.023.

    Article  PubMed  Google Scholar 

  55. McDonald L, Wardle J, Llewellyn CH, Fisher A. Nighttime sleep duration and hedonic eating in childhood. Int J Obes. 2015;39(10):1463–6. https://doi.org/10.1038/ijo.2015.132.

    Article  CAS  Google Scholar 

  56. Yu YH, Vasselli JR, Zhang Y, Mechanick JI, Korner J, Peterli R. Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications. Obes Rev. 2015;16(3):234–47. https://doi.org/10.1111/obr.12246.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-processed diets cause excess calorie intake and weight. Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab; 2019. https://doi.org/10.1016/j.cmet.2019.05.020.

    Book  Google Scholar 

  58. Vandevijvere S, Jaacks LM, Monteiro CA, Moubarac JC, Girling-Butcher M, Lee AC, et al. Global trends in ultraprocessed food and drink product sales and their association with adult body mass index trajectories. Obes Rev. 2019. https://doi.org/10.1111/obr.12860.

  59. Poti JM, Braga B, Qin B. Ultra-processed food intake and obesity: what really matters for health-processing or nutrient content? Curr Obes Rep. 2017;6(4):420–31. https://doi.org/10.1007/s13679-017-0285-4.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Nutrition Course at the São Camilo University Center and the Postgraduate Course in Sports Nutrition and Wellness at the São Camilo University Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Vinicius Lucio dos Santos Quaresma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gissoni, N.B., dos Santos Quaresma, M.V.L. Short sleep duration and food intake: an overview and analysis of the influence of the homeostatic and hedonic system. Nutrire 45, 8 (2020). https://doi.org/10.1186/s41110-019-0111-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-019-0111-8

Keywords

Navigation