Hyperkalemia is not uncommon occurrence in pediatric hospital admissions, accounting for up to 29% of all pediatric intensive care unit admissions [6]. Hyperkalemia is a serious clinical manifestation that requires immediate and effective treatment, since a serum (or plasma) potassium level > 7 mmol/L is potentially lethal due to its cardiotoxicity [6, 7].
Since the ratio of total body intracellular to extracellular potassium is approximately 40:1, while the ratio of circulating blood cells to plasma potassium is approximately 20–30:1, any minute release of intracellular potassium can inaccurately raise its serum or plasma levels. Consequently, it is essential to differentiate between true hyperkalemia and spurious PHK, in order to avoid exposing the patient to unnecessary medications and needless acute dialysis that carries significant adverse effects and can lead to fatal hypokalemia [7, 8] Unfortunately, in the case described above, this was recognized following the patient having received medical treatment for hyperkalemia, where venous blood-gas potassium level dropped significantly, though without complications (Table 3, Fig. 1).
Spurious hyperkalemia is considered when in vitro-measured serum (or plasma) potassium level is falsely raised to above the local reference range upper limit, while the actual in vivo level is normal [4]. There are two defined clinical conditions that lead to spurious hyperkalemia: PHK and rPHK. Serum is defined as the remainder-portion of blood, post-coagulation. However, plasma is obtained when blood clotting is prevented, with addition of anti-coagulants such as heparin. Based on previous reports, PHK is defined as a serum potassium level exceeding plasma potassium level by 0.4 mmol/L, provided that samples are collected under strict standardized techniques, maintained at room temperature (15–25 °C), and analyzed within one hour post-blood sample collection [7, 8].
PHK was first described by Hartmann and colleagues in 1955, where he reported a case of hyperkalemia in a patient with thrombocytosis and attributed this to the excess of potassium released by platelets during the clotting process [2, 3]. Thereafter, several theories were postulated for the possible etiology of PHK, including in vitro hemolysis during blood sample collection using narrow-gauge needles, fist clenching during phlebotomy and prolonged use of a tourniquet. Other researchers suggested that in vitro hemolysis could result from improper processing of blood samples, such as vigorous shaking of samples post-collection, prolonged sample incubation period in inappropriate temperatures, and excessive centrifugation [7, 9,10,11],(Fig. 2). Ku and colleagues, similarly to Dickinson and colleagues, had compared plasma and serum potassium levels in acute leukemia using two transport methods, concluding that the potassium level is highly exacerbated within pneumatic transport of samples, in comparison to messenger / hand transport [7, 12]. These possible extrinsic causes of PHK might be exaggerated in patients with extreme hyperleukocytosis, thrombocytosis, and polycythemia, especially in cases of leukemia—where the cell fragility is highly increased. (Table 3, Fig. 2). Moreover, inherited defects in the erythrocyte membrane structure that causes in vitro leak of potassium, such as leaky cell syndrome (familial pseudohyperkalemia) were reported in selected cases [7, 9,10,11](Fig. 2).
Our patient initially demonstrated an elevated serum potassium level. Consequently, in order to eliminate all possible mechanical causes of cell lysis—secondary to delayed transportation or using a pneumatic transport system—blood samples were collected by an expert nurse from the central line and sent immediately to the hospital laboratory by hand for analysis. The analyzed serum potassium level was 6.3 mmol/L, in comparison to the serum potassium level of 7.5 mmol/L, from another sample transported through pneumatic tube facilities. This discrepancy indicated that pneumatic transport can play a role in the pseudo-elevation of serum potassium. This was also demonstrated by Garwicz et al., together with and Huang and colleagues, where both research groups identified that pneumatic tube-transported samples resulted in exacerbated plasma potassium levels in comparison to manually-transported samples in a patient with chronic lymphocytic leukemia (CLL) and hyperleukocytosis [9, 13].
In addition, our medical team considered the possibility of potassium discharge from platelets during the clotting process within the serum sample, so an additional plasma blood sample was collected within a heparinized tube and sent immediately to the laboratory by hand, along with another serum sample (un-heparinized tube). Surprisingly, the potassium level was found to be elevated within plasma, in comparison to the serum potassium level (7.42 mmol/L and 6.4 mmol/L, respectively). This raised the possibility of rPHK, where plasma-potassium levels are typically higher than serum- potassium levels, and is an opposing clinical finding in comparison to PHK.
Singh et al. first described rPHK in 1997, in a patient with chronic lymphocytic leukemia (CLL) when the team noticed a discrepancy in potassium levels (between heparinized and un-heparinized blood samples) [1]. Previous literature concerning rPHK is limited, although our literature review identified 14 case reports that were predominantly adult patients with chronic lymphocytic leukemia (CLL) and lymphoma [1, 9, 13,14,15,16,17,18,19,20,21,22]. This study identified only one case similar to the above-described case, that was reported in a child with ALL, indicating that rPHK can occur in any age group [23]. Interestingly, Mansour and colleagues hypothesized that rPHK might carry a good prognostic indicator for CLL patients, since rPHK has a directly-proportional correlation with higher fragile cell numbers (i.e. smudge cell in CLL) which is a known prognostic factor in CLL [24].
The mechanism of rPHK is not clearly understood, though several observations have been made. Meng and colleagues demonstrated that increasing heparin concentrations within collection tubes were associated with increased potassium and LDH levels, implying increased WBC lysis since no hemolysis was observed [15]. These findings are not surprising given that the cells in patients with leukemia are both fragile and in higher abundance, consequently having increased heparin sensitivity and susceptibility to lysis, particularly during processing, pneumatic-tube transportation, and centrifugation [25]. This could explain the finding in our leukemic patient, where her leukocyte count was extremely high (WBC > 400 × 109/L, with 90% blasts). Furthermore, the clotting process within serum samples might prevent movement of entangled white blood cells and, consequently, minimize their exposure to traumatic lysis and leading to lower serum potassium levels, in comparison to plasma levels [26]. This theory was argued against by El Shamy and colleagues in their recent retrospective cohort study, who demonstrated that 44% of the study population had developed rPHK in the absence of leukocytosis, with approximately 17% of of this cohort having a hematological malignancy [20].
Another theory suggested that severe leukocytosis and malignant cells have increased consumption of metabolic fuels, causing depletion of adenosine triphosphate (ATP), that can lead to impaired Na + /K + ATPase pump activity (which typically maintains intracellular potassium levels constant). This results in the extracellular release of potassium from the exacerbated number of WBCs that are present in such cases [9, 14, 15, 17, 27].
An alternative explanation could be that leukemic cells undergo in vitro lysis, which leads to the release of cytoplasmic adenosine triphosphate (ATP) into plasma. Extracellular ATP has previously been shown to increase the in vitro cation permeability of lymphocytes from patients with CLL [17]. Influx of monovalent sodium (Na +) and lithium (Li +) ions was increased, while there also was a decrease in total cellular potassium (K +) levels, suggesting that extracellular ATP is an energy source for the active transport of potassium ions out of undamaged cells [17].
Considering other contributing factors for the pseudo-elevation of potassium levels in serum and plasma samples, blood gas or whole-blood potassium level appears to be more accurate and remains the analysis of choice, particularly since it is a rapid and reliable analytical procedure due to the short interval between the sample-drawing and actual analysis, as demonstrated in the above-described case. Lee and colleagues have reported this observation in four adult cases with CLL, where plasma potassium levels were exacerbated in comparison to potassium levels following whole-blood gas analysis [25].
A total of six out of the 14 reported previous literature cases with rPHK had received a potassium-lowering agent, together with dialysis that was initiated in three of such cases. Some patients developed hypokalemia following such interventions and required potassium supplements (Table 2). This raised the importance of carefully interpreting elevated potassium levels in children with leukemia and hyperleukocytosis, who typically have a normal renal function, and instead consider the possibility of PHK or rPHK. Additionally, we recommend using potassium levels in whole-blood gas samples as a reference for the diagnosis and management of true hyperkalemia in patients with acute leukemia and hyperleukocytosis, in order to avoid any treatment-related complications.