In selective-targeted STA-MCA bypass, an essential step is to identify the correct recipient artery, because revascularization into a wrong territory is ineffective, with a risk of severe ischemic complications [3]. To target the correct recipient artery, anatomical landmarks, preoperative neuroimaging, neuronavigation, and stereotactic techniques may help the surgeon [3]. However, identification of the correct recipient artery by these methods may be difficult or fail because real-time blood flow cannot be assessed. In the present case, the recipient artery was changed from the M2-M3 segment to the M4 cortical artery intraoperatively. Although the M2-M3 segment could be detected based on anatomical landmarks such as the M1 segment, the M4 cortical arteries fed by the inferior trunk could not be identified on gross examination. To overcome this difficulty, ICG-VA was useful for selecting the recipient artery. The conclusive factor was delayed luminescence. This finding agreed with the preoperative DSA finding of delayed retrograde flows from the ACA, because ICG-VA allows real-time assessment of the cerebral circulation. On the other hand, ICG-VA is used to identify the recipient artery in aneurysmal surgery that needs parent artery occlusion under bypass protection [1,2,3,4,5]. In such cases, under temporary clipping of the proximal vessel, the distal vessel that shows delayed or no filling of luminescence is selected as the recipient. In the present case, ICG-VA was performed under similar conditions, because the M2 inferior trunk was occluded.
On the other hand, it is controversial to perform urgent STA-MCA bypass like our case. However, efficacy of urgent STA-MCA bypass has been reporte [6,7,8]. We have performed urgent STA-MCA bypass in patients with progressing stroke owing to occlusion of internal carotid artery or MCA based on our own experiences [9]. In this case, we selected urgent STA-MCA bypass because the patient presented progressing stroke in spite of aggressive medication. As a result, the patient showed good recovery.
In conclusion, ICG-VA shows differences in flow speed as delayed luminescence. This finding may be useful for detecting target vessels.