In general any orally administered drug has to pass through the protective line of cytochrome P450 enzymes (CYP450) and transport proteins before making its way to the bloodstream; this constitutes the first-pass effect. The diversity of cytochrome isoenzymes is vast and hence depicted by a specific nomenclature bearing Arabic numerals. Among the isoenzymes 3 families (CYP1, 2 and 3) have been identified to exert a pivotal role in drug metabolism and are concentrated in the liver and the intestine. Moreover, drug metabolism is a never ending process whereby every second drug is metabolized by isoenzyme Cytochrome P3A4 (CYP3A4). Additionally, there is mounting evidence that alteration of the 170 kDa phosphorylated glycoprotein; p-glycoprotein (p-gp) - a major transmembranous efflux transporter of the intestinal mucosa plays a crucial role in herb-drug interactions. Nonetheless, secondary metabolites found in plants have the potential to alter the first-pass effect since some of them can mimic substrates for enzymes and transport proteins. The result of these effects gives rise to herb-drug interactions [51]. Two types of interactions exist:
-
1.
Pharmacokinetic herb-drug interactions (PKHDI) arise whenever the absorption, distribution, metabolism or elimination of one drug is modified by another one. In this case the hepatic metabolism of drugs is altered due to actuation or suppression of primarily the CYP3A4 isoenzyme of the CYP450 family. The effects of these changes have the potential to induce important clinical consequences [5].
-
2.
Pharmacodynamic herb-drug interactions (PDHDI) are the result of the change in effect of a drug by another one. A wide diversity of clinically relevant pharmacokinetic interactions are due to modifications of CYP450 system; transmembrane pump, hepatic or renal insufficiency, as well as mechanisms still being elucidated. PDHDI may be:
-
(a)
Additive or synergistic: the administration of more than one drug having the same pharmacological effects together augments their desired as well as side effects. For example, when methotrexate and sulfonamides are used concomitantly there is a high risk that this combination precipitates megaloblastic anaemia due to the antifolate effect of both agents.
-
(b)
Antagonistic: the concomitant use of two pharmacological agents decreases the effect of one or both agents. This can be epitomized by a loss of glycemic control in diabetic patients whenever systemic corticosteroids and oral hypoglycaemic agents are administered in combination [74].
Aconitum spp. (Ranunculaceae)-Monkshood root
The use of the Aconitum species, such as A. kusnezoffii and A. carmichaeli is commonly advocated by traditional Chinese Medicines (TCM) practitioners for the management of pain caused by trigeminal and intercostal neuralgia, rheumatism, arthritis, bruises, and fractures. The major metabolites isolated form the plant up to date include diterpenoid ester alkaloids, including aconitine. Interestingly, it is hypothesized that these constituents are responsible for a major number of deaths from cardiovascular collapse and ventricular tachyarrythmias in Hong Kong and Australia. It has been established that the alkaloids activate sodium channels and excite cardiac, neural and muscular tissues above normal levels. Furthermore, they have the potential to induce mild diaphoresis and can slow pulse rate due to its effect on brainstem centers and direct effects of aconite on the myocardium may result into ventricular fibrillation. Additionally, a number of side effects including bradycardia, hypotension to fatal ventricular arrythmia can arise due to contact with leaves or sap from Aconitum plants [28].
Allium sativum (L.) (Alliaceae)-Garlic
Allium sativum is probably one of the earliest known medicinal plant exploited as a versatile medicinal plant employed for the prophylaxis, management and treatment of many disease conditions in man. Its basic properties make it a valuable plant for the prevention of hypercholesterolaemia, hypertension, artherosclerosis as well as cancer. Garlic is also known to be an antimicrobial and it is exploited by a number of communities around the world as an immune booster. Amongst the plethora of metabolites that the garlic plant synthesizes up to date only a few have been shown to exhibit therapeutic properties and have been identified as organosulfur compounds and named as allicin, alliin and ajoene [17].
The interaction of A. sativum supplements with antihypertensive, anticoagulant, antiplatelet and antilipidemic drugs is well documented. It is hypothesised that A. sativum metabolites bear configuration that can exert agonist and inhibitory effects similar to these drugs on drug targets hence undeniably altering their therapeutic and toxic potential [12]. During a randomized trial where subjects were administered three preparations of A. sativum versus placebo it was observed that A. sativum did not significantly alter LDL-cholesterol, HDL-cholesterol, triglycerides, or total cholesterol-HDL ratio [53]. Moreover, studies in rats have demonstrated that A. sativum can interact pharmacodynamically with antihyperlipidaemia and antihypertensive medicines, such as atorvastatin, propranolol, hydrochlorothiazide or captopril. Moreover, a high dose of oral atorvastatin (l0 mg/kg) has been shown to induce kidney damage if used either alone or in combination with high concentrations of A. sativum (1 % in the food), while low doses of atorvastatin (2.5 mg/kg) in combination with high concentrations of A. sativum (0.75 % in the food) has low nephrotoxic potential [65]. Additionally, available data from previous studies have depicted that bleeding from garlic occurs in individuals ingesting large doses of garlic which is an average consumption of four cloves daily. Interestingly studies tend to show that ajoene is the metabolite that inhibits platelet aggregation and raises by many folds the risk of hemorrhaging in patients under anticoagulant or antiplatelet agents. In line with this, it is recommended that the intake of garlic supplements should be halted for about 10 days in patients about to undergo surgery, and this practice is of paramount importance in patients under anticoagulant and antiplatelet drug therapy [73].
Citrus paradisi Macfad. (Rutaceae) - Grapefruit
Citrus paradisi is a food plant high in pectins and lycopene hence used as a dietary intervention to lose weight and improve cardiovascular health. Its bioactive constituents, namely naringenin and bergamottin have been reported to inhibit the CYP3A4 enzyme in small-intestine enterocytes [1]. This results in an increase in the area under the curve (AUC) in blood of CYP3A4 substrate drugs. A plethora of conventional drugs are metabolized by the CYP3A4 system and include mainly calcium channel blockers, cyclosporine, statins, midazolam, estrogen, and terazosin. Additionally, the bioavailability of these medications is increased and their effect is potentiated which results into dangerous hypotension, myopathy, or liver toxicity. A study carried out on postmenopausal women taking estrogen has shown that grapefruit juice may increase the risk of breast cancer by inhibiting estrogen metabolism by CYP3A4 [5]. A number of drugs have been found to interact with grapefruit juice and it has been established that it is an average daily consumption of 227 g of grapefruit juice that will suppress the activity of cytochrome enzymes and that the concomitant use with cardiovascular drugs such as antiarrhythmic drugs will result into cardiotoxicity, bradycardia and liver injury. When taken with calcium channel blockers it can cause tachycardia as well as peripheral edema. It is recommended that patients under cardiovascular drug treatment should not consume grapefruit for about 24 to 72 h prior to drug use [54]. A number of reports tend to show that many antilipidemic agents mostly artorvastatin, lovastatin and simvastatin interact with the herb. Additionally it has been established that a considerable number of drugs employed in the management of cardiovascular disease such as carvedilol, felodipine, nifedipine, nisoldipine, nicardipine, nitrendipine, nimodipine and verapamil also interact with grapefruit juice [41, 61, 66] are summarized in Table 1 [24]. Interestingly, it has been shown that the herb can also interfere with the absorption of several drugs and results in a reduced plasma concentration of fexofenadine and the beta-blockers celiprolol and talinolol has been found in patients [54].
Table 1 The effect of grapefruit on the AUC of drugs employed in cardiology
Cratageus spp. (Rosacea) - Hawthorn
Hawthorn extract has a long standing traditional use in treating panoply of disorders including anxiety, asthma, hypertension, dyslipidemia, hypotension, angina, arrhythmias, heart failure, and indigestion. Interestingly, the most revealing data from the plant advocates positive benefits in chronic congestive heart failure patients (CHF) [9].
Based on existing studies carried on rats fed on a hyerlipidemic diet, Crataegus extract has been found to inhibit the scale up of cholesterol, triglycerides, and phospholipids in LDL and very low-density lipoprotein ultimately preventing the manifestation of atherosclerosis. In addition, extracts of Cratageus spp. can induce positive inotropic and exert vasodilatory effects increasing myocardial perfusion and reducing afterload. Interestingly, when used as a complementary therapy for CHF, the plant has been effective in relieving the patient’s symptom as well as improving physiologic outcomes [49]. Cratageus can potentiate the activity of digitalis hence, its concomitant use with the drug has to be monitored carefully. Given the hypothesis that Crataegus spp. can enhance the activity of digitalis, the single study involving both agents in humans found out that the pharmacokinetic profile of digoxin does not differ with or without concomitant hawthorn use. Furthermore, these findings can be corroborated with the results from a systematic review carried on 5,577 patients reporting that adverse events due to hawthorn were not significant in nature and no drug interaction reports or deaths were reported [5].
According to another study, employing high doses of Crataegus extract induces a cardioprotective effect on ischemic-reperfused heart while not interferring with the coronary blood flow. Conversely, other studies carried out in cats and dogs administered oral and parenteral oligomeric procyanins of Crataegus showed an increase in coronary blood flow. Furthermore, double-blind clinical trials have demonstrated simultaneous cardiotropic and vasodilatory actions of Crataegus as well as its potential to lower blood pressure as part of its action in lowering peripheral vascular resistance [63, 78]. Given this insufficiency of data on the reported safety and efficacy of the plant health care professionals are strongly discouraged to promote use of the plant’s extract in patients prescribed with heart failure medications [7, 57].
Ephedra sinica Stapf. (Ephedraceae)- Chinese ephedra or Ma huang
Ephedra sinica has a long standing use in TCM to treat respiratory symptoms and febrile illness. This plant has been in extensive use in TCM as an anti-asthmatic and decongestant for 5000 years [11]. In addition, E. sinica, also referred to as Chinese ephedra or Ma Huang, was in common use as a performance enhancer, fat burner, and to manage weight before its prohibition from the United States in April 2004 due to serious adverse effects such as lethal arrhythmias, stroke, vasoconstriction, and myocardial infarction [11]. A multiplicity of dietary supplements containing E. sinica are still in popular use in many western countries despite their prohibition by the Food and Drug Administration in America [11].
The alkaloids of the plant are the main active ingredient of E. sinica. These alkaloids show both direct agonism at the adrenergic receptors as well as indirect agonism by stimulating the release of norepinephrine from presynaptic neurons [11]. Clinical results involve tachycardia, hypertension, diaphoresis, bronchodilation, agitation, and mydriasis with a retained light reflex. These sympathomimetic effects have been suggested to be responsible for the reported adverse events in human and mortality in animal studies [11].
During the past decade, the FDA has identified more than 100 ephedra containing products that have been postulated to be the cause of more than 800 reports of adverse reactions. A plethora of adverse reactions reported included insomnia, nervousness, tremor, headaches, hypertension, seizures, arrhythmias, heart attack, and stroke as well as lethality [11]. Moreover a case report of myocardial infarction in a 29-year-old patient following ephedrine use exemplifies the long-term danger of such products and is the first report of coronary artery aneurysm associated with its use [14]. Due to deleterious effects on the cardiovascular system, the FDA proposes a maximum daily dose of 24 mg with equal intake every 6 h. This rule also specifies that labels should be attached ephedrine-containing products specifying its use for no more than 7 days and warning consumers that exaggerated intake of the product may result in heart attack, stroke, seizure or death [11].
Ginkgo biloba L. (Ginkgoaceae) - Ginkgo
Ginkgo biloba commonly called the maidenhair tree is one of the oldest living fossil on the planet dating well over 200 million years. G. biloba forms part of one of the most popular herbs used worldwide and is advocated mainly for cerebral insufficiency, memory loss, Alzheimer’s disease, peripheral vascular disease and circulatory disorders [28]. The use of the root and kernels of G. biloba is widely documented in TCM.
A number of scientific reports tend to support the fact that G. biloba extract is primarily employed against cerebral insufficiency and exerts secondary effects on vertigo, tinnitus, memory, and mood. Similarly, an investigation on 327 demented patients showed that 120 mg of G. biloba extract produced improvements in dementia [69]. Despite the fact that Ginkgo is now an accepted drug in Europe, it is still considered as a dietary supplement in the United States available in 40-mg tablets of extract. In Europe, the recommended maximal daily dose of the plant’s extract is 120 -mg where a 40-mg tablet is taken three times with meals. Multiple adverts effects from G. biloba extract have been reported and include gastrointestinal disturbances, headache, and skin rash. Several case reports of bleeding, including subarachnoid hemorrhage, intracranial hemorrhage, and subdural hematoma, have been associated with G. biloba [30, 40, 67, 77].
A concentrated extract of G. biloba leaves was developed in the West in the 1960s. Many of its secondary metabolites have been identified and named for e.g. quercetin, kaempferol, isorhamnetin and terpene trilactones. Interestingly, other metabolites from the plant such as ginkgolides and bilobalides have been found to have antiplatelet activity and hence its concomitant use with anticoagulant agents such as warfarin and heparin as well as analgesic agents such as aspirin, triclopidine and clopidogrel is not recommended. Additionally, a combination of ginkgo with antiplatelet agents, anticoagulants or antithrombotics results in hyphema, subphrenic hematoma as well as intracranial hemorrhage [43, 45]. Interestingly, it has been found in clinical trials that the herb can induce the CYP450 system and in doing so depletes the levels and lowers the effectiveness of drugs metabolised by this enzyme such as like nicardipine [73].
Panax quinquefolius (L.) and Panax ginseng C.A.Mey. (Araliaceae) - American ginseng and Asian ginseng
The use of Ginseng as an herbal medicine dates now more than 2000 years in China, Korea and Japan, and it is only in the last twenty years or so that it has gained popularity in the United States, Canada and Europe. Ginseng varieties have been garnering increasing interest recently for their effects on the cardiovascular system. Its major active components are ginsenosides and up to date the structure of about 40 distinct ginsenosides has been elucidated. Indeed, ginseng possesses diverse pharmacological effects including immune modulation, anti-diabetic and anti-cancer effects. Interestingly, in the cardiovascular system, ginseng has been found to trigger nitric oxide release, vasorelaxation, improve lipid profiles, and has been used as a treatment for hypertension and heart failure [20, 33, 40, 71, 90, 94].
Two species namely Panax quinquefolius and Panax ginseng are considered to harbor significant therapeutic outcomes. Chemically, more than one factor differentiates P. quinquefolius and P. ginseng. One important parameter that differentiated the two is the presence of ginsenoside Rf in P. ginseng versus the presence of pseudoginsenoside F ll in P. quinquefolius [59]. Compared with the long standing use and the widespread research on P. ginseng, data on P. quinquefolius is relatively limited. Ginseng abuse syndrome includes hypertension, behavioral changes, and diarrhea. Ginseng can mimic estrogen effects since its active component ginsenosides shares a similarity with the chemical structure of testosterone, estrogen, and glucocorticoids. This points to the fact that Ginseng should therefore not be employed by pregnant women and or receiving hormone replacement therapy. Furthermore, neonatal death has been linked to the maternal use of the plant. In cardiology, the concomitant administration of ginseng with warfarin has the potential to reduce prothrombin time [73].
A number of studies have emphasized that P. quinquefolius has a multiplicity of pharmacological effects on the cardiovascular and central nervous systems, antidiabetic effects, antitumour activities and immunomodulatory effects similar to those of P. ginseng. In comparison to P. ginseng, ginsenosides are also its major biologically active constituents. In a study involving 20 healthy individuals it was found that P. quinquefolius reduced the anticoagulant effect of warfarin after 14 days of its administration [59]. Similarly, in another study, a dose of 2 g per day for 14 to 28 days of American ginseng caused a decrease in the AUC of warfarin [36].
P. ginseng is a medicinal herb documented with diverse biological effects, including immune function enhancement and anti-aging, anti-diabetic, anti-tumor, anti-apoptotic, and anti-oxidative effects. Indeed, a wealth of literature suggests that it has diverse pharmacological activities, including effects on the central nervous system, antineoplastic effects and immunomodulatory effects. Many of ginseng’s medicinal effects are attributed to triterpene glycosides, which are known as the ginsenosides. Indeed, 38 ginsenosides have been found to bear the potential of exerting distinct effects on the endothelial cells, prevention of programmed cell death, regulation of angiogenesis, and stabilizing blood pressure. Intriguingly, it is reported that ginsenosides can enhance endothelial function [29, 47]. Additionally it is also reported that P. ginseng can induce the activity of the enzymes of the CYP450 family and as a consequence lower the bioavailability of a number of drugs including warfarin [26]. A number of reports have also concluded that P. ginseng bears the same effect as anticoagulant drugs in where it reduces platelet adhesiveness and binding as well as delays the time required for blood to clot. When administered concurrently with warfarin it has the potential to lower the drug’s level during metabolism where reduced levels of the drug lowers it INR (international normalized ratio) [62, 94]. Nonetheless, even with these set of findings it has not been possible to fully understand the mechanism underlying these consequences. It is only known that the herb has no effect on the activity of CYP1A2 and CYP3A4 but induces CYP2C9 the enzyme primarily responsible for S-warfarin metabolism but nothing has been yet confirmed for other isoenzymes of the cytochrome family [22].
Hypericum perforatum L. (Hyperiacea) - St John’s Wort
Hypericum perforatum remains one of the most ancient and popular herbs in the United States [39]. It is mainly advocated against depression, anxiety, sleep disorders, the common cold, herpes, and the human immunodeficiency virus. Furthermore, it is used as a topical analgesic, and is administered as an enema for the treatment of ulcerative colitis. Scientific investigations have identified numerous pharmacologically active compounds in the plant including; naphthodianthrones for example hypericin and pseudohypericin, phloroglucinols for example hyperforin and adhyperforin, flavonoids for example quercetin, quercitrin and 13, 118-biapigenin [65].
H. perforatum has been identified as an inducer of the CYP450 system, particularly of the main drug metabolizing enzyme CYP3A4. Ultimately it results in decreased levels of various drugs metabolized by this enzyme system such as; ethinyl estradiol, indinavir, and cyclosporine with the potential of reducing their levels up to 50 % as happened in an organ transplant patient under cyclosporine treatment resulting in tissue rejection. Given the potential of the herb to result in serious adverse effects such as arrhythmia, hypertension, or other undesirable effects its co-administration with drugs metabolized by CYP3A4 system should be prohibited [13].
It has also been found that the concomitant use of warfarin with H. perforatum decreases blood clotting time hence resulting in sub-therapeutic anticoagulation and increased risk of thromboembolism [92]. Indeed, patients under warfarin treatment and who have a history of stroke, thrombosis, atrial fibrillation, or prosthetic cardiac valves should avoid the use of St John’s Wort. Sub-therapeutic levels of statins may potentiate the risk of cardiovascular events. The herb can also induce the multidrug resistance gene product P-gly, which may reduce the blood levels and efficacy of drugs such as digoxin [8, 27]. Additionally, it has been reported that the herb can induce the activity of CYP2C9 as well and result in decreased levels of drugs metabolized by this enzyme. Indeed, the inability of warfarin and phenprocoumon to exert their therapeutic potential as a consequence of depleted blood levels has been reported and is considered a confirmed interaction with the herb. Therefore, the UK Medicines and Healthcare Regulatory Agency forbids CVD patients from using the herb [81]. Additionally it is reported that the levels of drugs used for the management of cardiovascular drugs such as amiodarone, amlodipine, diltiazem, felodipine, lidocaine, losartan, lovastatin, nifedipine, propafenone, simvastatin, and verapamil are severely reduced during concurrent use of the herb hence preventing the desired response from these drugs. The concomitant use of these herbs with drugs can hence exacerbate conditions like arrhythmia, angina pectoris, or hypertension [8]. Table 2 summarise the major classes of drug and the Cytochrome enzyme/transport protein involved during the adverse event.
Table 2 Summary of major classes of drug and the Cytochrome enzyme/transport protein involved during adverse events
Leonurus cardiaca- Linn. (Lamiaceae)-Motherwort
Motherwort has a long standing use in orthodox medicine particularly among the European and Asian traditional systems. Its use as a sedative and antispasmodic started earlier than the 15th century. The origin of its name emanates from its use by Greeks for the relief of anxiety among pregnant women. Its potential against cardiovascular ailments is also well documented where it can assuage cardiac arrhythmias, tachycardia as well as heart palpitations. Its main metabolites elucidated till date are the phenylpropanoid glycosides and contribute to the purported pharmacological effects. Studies in rats have depicted that a phenylpropanoid, lavandulifolioside isolated from the herb has the potential to extend PR, QRS, and QT intervals. It is also validated that the activity of the herb can be compared to that of class 3 antiarrhythmic agents. Despite considerable research on this herb there is a dearth in evidence regarding its safe and effective use in the management of palpitations and cardiac arrhythmias in humans. Additionally data related to the metabolism of its active constituents by the CYP450 family is scarce. In line with the results of studies involving this herb, it is suggested that its use must be monitored carefully in patients who are under drug treatment bearing narrow therapeutic windows as well as metabolized by the cytochrome isoenzymes. Additionally, an intravenous infusion of the herb has antiplatelet and antithrombotic effects as well as depletes fibrinogen levels. Due to these effects its concomitant use with antiplatelet or anticoagulant agents is strongly interdicted [8, 73].
Stephania tetrandra - S. Moore (Menispermaceae)
Stephania tetrandra is recommended for hypertension and angina in TCM. One of the major metabolites of the plant responsible for blood pressure lowering effect is the alkaloid tetrandrine which acts as a T and L calcium channel antagonist similar to verapamil and hence when taken concomitantly competes with the drug and other calcium channel blockers for the same effect. Animal studies in rats have demonstrated that a parenteral infusion of dose 15 mg/kg has the potential to lower the mean, systolic, and diastolic blood pressures for more than half an hour. Nonetheless, a higher dose of the infusion (40 mg/kg) caused death of the rats by myocardial depression. Moreover in dogs an orally administered dose of 40 mg/kg 24 times at regular intervals for 60 days caused necrotic liver cell death while the same experiment at a lower dose of the tetrandrine (20 mg/kg) caused reversible injury to liver cells. The use of the herb is not recommended due to underlying risks of hepatotoxicity and renal failure unless more extensive studies establish safe and effective doses of the alkaloid [15, 73].
Miscellaneous plants and CVD
A summary of some herb-drug interactions and other herbal products documented to have adverse effects is presented in Tables 3 and 4.
Table 3 Mechanism of herb-drug interactions
Table 4 Summary of common herbs used in CVD with possible adverse events