La lechería argentina: estado actual y su evolución (2008 a 2011). https://inta.gob.ar/documentos/la-lecheria-argentina-estado-actual-y-su-evolucion-2008-a-2011. Accessed 10 Oct 2018.
SENASA. Tambos. https://www.argentina.gob.ar/senasa/mercados-y-estadisticas/estadisticas/animal-estadisticas/bovinos/bovinos-y-bubalinos-sector-primario. Accessed 10 Oct 2018.
Producción de leche a nivel nacional. https://datos.agroindustria.gob.ar/dataset?organization=subse-lecheria&groups=produccion-agroindustrial. Accessed 10 Oct 2018.
Cappellini OR. Dairy development in Argentina. In: Dairy Reports. FAO. 2011.
Dekkers JCM, Hospital F. The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet. 2002;3:22–32.
CAS
Article
Google Scholar
Dekkers JCM. Application of genomics tools to animal breeding. Current Genomics. 2012;13:207–12.
CAS
Article
Google Scholar
Boichard D, Fritz S, Rossignol MN, Boscher MY, Malafosse A, Colleau JJ. Implementation of Marker Assisted Selection in French Dairy Cattle Breeding. In: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, August 19-23, vol. 22. France, Session: Montpellier; 2002. p. 22.03.
Google Scholar
Bennewitz J, Reinsch N, Thomsen H, Szyda J, Reinhardt F, Kühn C, Tuchscherer A, Schwerin M, Weimann C, Erhardt G, Kalm E. Marker Assisted Selection in German Holstein Dairy Cattle Breeding: Outline of the Program and Marker Assisted Breeding Value Estimation. In: 54st Annual Meeting of the European Association for Animal Production, 31 August to 3 2003, Rome, Italy, Session G1.9.
Spelman RJ. Utilisation of molecular information in dairy cattle breeding. In: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, August 19-23, 2002, Montpellier, France, Session 22, 22.02.
Weller JI, Ezra E, Ron N. Invited review: a perspective on the future of genomic selection in dairy cattle. J Dairy Sci. 2017;100:1–12.
Article
Google Scholar
Grisart B, Coppieters W, Farnir F, Karin L, Ford C, et al. Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002;12:222–31.
CAS
Article
Google Scholar
Weikard R, Kühn C, Goldammer T, Freyer G, Schwerin M. The bovine PPARGC1A gene: molecular characterization and association of an SNP with variation of milk fat synthesis. Physiol Genomics. 2005;21:1–13.
CAS
Article
Google Scholar
Roy R, Ordovas L, Zaragoza P, Romero A, Moreno C, Altarriba J, Rodellar C. Association of polymorphisms in the bovine FASN gene with milk-fat content. Anim Genet. 2006;37:215–8.
CAS
Article
Google Scholar
Ogorevc J, Kunej T, Razpet A, Dovc P. Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim Genet. 2009;40:832–51.
CAS
Article
Google Scholar
You FM, Huo N, Gu YQ, Luo M-C, Ma Y, Hane D, Lazo GR, Dvorak J, Anderson OD. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics. 2008;9:253.
Article
Google Scholar
Staden R, Beal KF, Bonfield JK. The Staden package. In: S Misener, SA Krawetz, editors. Computer methods in molecular biology, bioinformatics methods and protocols. The Humana press Inc., Totowa, New Jersey; 1998. Vol 132; p. 115–130.
Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, et al. A whole-genome assembly of the domestic cow. Bos taurus Genome Biol. 2009. https://doi.org/10.1186/gb-2009-10-4-r42.
Slater GSC, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31.
Article
Google Scholar
Tobler AR, Short S, Andersen MR, Paner TM, Briggs JC, et al. The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping. J Biomol Tech. 2005;16:396–404.
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.
CAS
Article
Google Scholar
Kirkpatrick M, Lofsvold D, Bulmer M. Analysis of the inheritance, selection and evolution of growth trajectories. Genetics. 1990;124:979–93.
CAS
PubMed
PubMed Central
Google Scholar
Jamrozik J, Schaeffer LR, Dekkers JCM. Genetic evaluation of dairy cattle using test day yields and random regression model. J Dairy Sci. 1997;80:1217–26.
CAS
Article
Google Scholar
Cohen-Zinder M, Seroussi E, Larkin DM, Loor JJ, et al. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 2005;15:936–44.
CAS
Article
Google Scholar
Ikonen T, Bovenhuis H, Ojala M, Ruottinen O, Georges M. Associations between casein haplotypes and first lactation milk production traits in Finnish Ayrshire cows. J Dairy Sci. 2001;84:507–14.
CAS
Article
Google Scholar
Nilsen H, Olsen H, Hayes B, Sehested E, Svendsen M, Nome T, Meuwissen T, Lien S. Casein haplotypes and their association with milk production traits in Norwegian red cattle. Genet Sel Evol. 2009. https://doi.org/10.1186/1297-9686-41-24.
Khatib H, Zaitoun I, Wiebelhaus-Finger J, Chang YM, Rosa GJM. The association of bovine PPARGC1A and OPN genes with milk composition in two independent Holstein cattle populations. J Dairy Sci. 2007;90:2966–70.
CAS
Article
Google Scholar
Leonard S, Khatib H, Schutzkus V, Chang YM, Maltecca C. Effects of the osteopontin gene variants on milk production traits in dairy cattle. J Dairy Sci. 2005;88:4083–6.
CAS
Article
Google Scholar
Schnabel RD, Kim J-J, Ashwell MS, Sonstegard TS, Van Tassell CP, Connor EE, Taylor JF. Fine-mapping milk production quantitative trait loci on BTA6: analysis of the bovine osteopontin gene. Proc Natl Acad Sci U S A. 2005;102:6896–901.
CAS
Article
Google Scholar
Blott S, Kim J-J, Moisio S, Schmidt-Küntzel A, Cornet A, et al. Molecular dissection of a quantitative trait locus: a phenylalanine-to-tyrosine substitution in the transmembrane domain of the bovine growth hormone receptor is associated with a major effect on milk yield and composition. Genetics. 2003;163:253–66.
CAS
PubMed
PubMed Central
Google Scholar
Buchanan FC, Van Kessel AG, Waldner C, Christensen DA, Laarveld B, Schmutz SM. Hot topic: an association between a leptin single nucleotide polymorphism and Milk and protein yield. J Dairy Sci. 2003;86:3164–6.
CAS
Article
Google Scholar
Komisarek J, Dorynek Z. Effect of ABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in polish Holstein-Friesian bulls. J Appl Genet. 2009;50:125–32.
CAS
Article
Google Scholar
Rincón G, Islas-Trejo A, Casellas J, Ronin Y, Soller M, Lipkin E, Medrano JF. Fine mapping and association analysis of a quantitative trait locus for milk production traits on Bos taurus autosome 4. J Dairy Sci. 2009;92:758–64.
Article
Google Scholar
Viitala S, Szyda J, Blott S, Schulman N, Lidauer M, Mäki-Tanila A, Georges M, Vilkki J. The role of the bovine growth hormone receptor and prolactin receptor genes in milk, fat and protein production in Finnish Ayrshire dairy cattle. Genetics. 2006;173:2151–64.
CAS
Article
Google Scholar
Kuss AW, Gogol J, Geldermann H. Associations of a polymorphic AP-2 binding site in the 5′-flanking region of the bovine β-Lactoglobulin gene with milk proteins. J Dairy Sci. 2003;86:2213–8.
CAS
Article
Google Scholar
Brym P, Kamiński S, Wójcik E. Nucleotide sequence polymorphism within exon 4 of the bovine prolactin gene and its associations with milk performance traits. J Appl Genet. 2005;46:179–85.
PubMed
Google Scholar
Khatib H, Schutzkus V, Chang YM, Rosa GJM. Pattern of expression of the uterine Milk protein gene and its association with productive life in dairy cattle. J Dairy Sci. 2007;90:2427–33.
CAS
Article
Google Scholar
Liao Y, Du X, Lonnerdal B. miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells. J Nutr. 2010;140:1552–6.
CAS
Article
Google Scholar
Farrell HM, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, et al. Nomenclature of the proteins of cows’ Milk - sixth revision. J Dairy Sci. 2004;87:1641–74.
CAS
Article
Google Scholar
Schennink A, Bovenhuis H, Léon-Kloosterziel KM, van Arendonk AM, Visker MHPW. Effect of polymorphisms in the FASN, OLR1, PPARGC1A, PRL and STAT5A genes on bovine milk-fat composition. Anim Genet. 2009;40:909–16.
CAS
Article
Google Scholar
Olsen HG, Nilsen H, Hayes B, Berg PR, Svendsen M, Lien S, Meuwissen T. Genetic support for a quantitative trait nucleotide in the ABCG2 gene affecting milk composition of dairy cattle. BMC Genet. 2007;8:32.
Article
Google Scholar
Mullen MP, Berry DP, Howard DJ, Diskin MG, Lynch CO, Berkowicz EW, Magee DA, MacHugh DE, Waters SM. Associations between novel single nucleotide polymorphisms in the Bos taurus growth hormone gene and performance traits in Holstein-Friesian dairy cattle. J Dairy Sci. 2010;93:5959–69.
CAS
Article
Google Scholar
Huang W, Peñagaricano F, Ahmad KR, Lucey JA, Weigel KA, Khatib H. Association between milk protein gene variants and protein composition traits in dairy cattle. J Dairy Sci. 2012;95:440–9.
CAS
Article
Google Scholar
Chang SC, Chang PY, Butler B, Goldstein BY, Mu L, et al. Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population. PLoS One. 2014. https://doi.org/10.1371/journal.pone.0109235.
Davidson CM, Northrup H, King TM, Fletcher JM, Townsend I, Tyerman GH, Au KS. Genes in glucose metabolism and association with spina bifida. Reprod Sci. 2008;15:51–8.
CAS
Article
Google Scholar
Tran PX, Au KS, Morrison AC, Fletcher JM, et al. Association of retinoic acid receptor genes with meningomyelocele. Birth defects research. Part a. Clinical and molecular teratology. 2011;91:39–43.
CAS
Article
Google Scholar
Jimenez-Sousa MA, López E, Fernandez-Rodríguez A, Tamayo E, et al. Genetic polymorphisms located in genes related to immune and inflammatory processes are associated with end-stage renal disease: a preliminary study. BMC Med Genet. 2012. https://doi.org/10.1186/1471-2350-13-58.
O’Byrne MR, Au KS, Morrison AC, Lin JI, Fletcher JM, et al. Association of folate receptor (FOLR1, FOLR2, FOLR3) and reduced folate carrier (SLC19A1) genes with meningomyelocele. Birth defects research. Part A, Clinical and molecular teratology. 2010;88:689–94.
Article
Google Scholar
Kgwatalala PM, Ibeagha-Awemu EM, Hayes JF, Zhao X. Stearoyl-CoA desaturase 1 3'UTR SNPs and their influence on milk fatty acid composition of Canadian Holstein cows. J Anim Breed Genet. 2009;126:394–403.
CAS
Article
Google Scholar
Fontanesi L, Calò DG, Galimberti G, Negrini R, Marino R, et al. A candidate gene association study for nine economically important traits in Italian Holstein cattle. Anim Genet. 2014;45:576–80.
CAS
Article
Google Scholar
Casas E, Montaldo H, Nonneman D, Poli M. Potential contribution of genomics and biotechnology in animal production. In: Núñez R, Ramírez R, Fernández S, et al., editors. La ganadería en América Latina y el Caribe: alternativas para la producción competitiva, sustentable e incluyente de alimentos de origen animal. 1st ed. Fundación Colegio de Postgraduados, México: Biblioteca Básica de Agricultura; 2015. p. 761–88.
Google Scholar
Meuwissen T, Hayes B, Goddard M. Genomic selection: a paradigm shift in animal breeding. Animal Frontiers. 2016;6:6.
Article
Google Scholar