Denoting \(U(t) = (x(t),y(t),c_{o}(t),c_{e1}(t),c_{e2}(t))^{T}\), the solution of system (2.1), is a piecewise continuous \(U:R_{ +} \to R_{ +}^{5}\), where \(R_{ +} = [0,\infty)\), \(R_{ +}^{5} = \{ Z \in R^{5}:U > 0\}\). \(U(t)\) is continuous on \((n\tau,(n + l)\tau ]\) and \(((n + l)\tau,(n + 1)\tau ]\). According to Ref. [19], the global existence and uniqueness of the solution of system (2.1) is guaranteed by the smoothness properties of \(f_{1}\), which denotes the mapping defined by the right-side of system (2.1).
The subsystem of system (2.1) is
$$\begin{aligned} \textstyle\begin{cases} \left . \textstyle\begin{array}{l} \frac{dx(t)}{dt} = - (c_{1} + d_{1})x(t), \\ \frac{dy(t)}{dt} = c_{1}x(t) - d_{2}y(t), \end{array}\displaystyle \right \} \quad t \in \bigl(n\tau,(n + l)\tau \bigr], \\ \left . \textstyle\begin{array}{l} \Delta x(t) = - u_{1}x(t), \\ \Delta y(t) = - u_{2}y(t), \end{array}\displaystyle \right \}\quad t = (n + l)\tau, \\ \left . \textstyle\begin{array}{l} \frac{dx(t)}{dt} = - (c_{2} + d_{3} + E_{1})x(t), \\ \frac{dy(t)}{dt} = c_{2}x(t) - (d_{4} + E_{2})y(t), \end{array}\displaystyle \right \} \quad t \in \bigl((n + l)\tau,(n + 1)\tau \bigr], \\ \left . \textstyle\begin{array}{l} \Delta x(t) = y(t)(a - by(t)), \\ \Delta y(t) = 0, \end{array}\displaystyle \right \} \quad t = (n + 1)\tau. \end{cases}\displaystyle \end{aligned}$$
(3.1)
Considering the first and second equations and the fifth and sixth equations of system (3.1), we can obtain the analytic solution of system (3.1) between pluses as
$$\begin{aligned} \textstyle\begin{cases} x(t) = \textstyle\begin{cases} x(n\tau ^{ +} )\mathrm{e}^{ - (c_{1} + d_{1})(t - n\tau )},\quad t \in (n\tau,(n + l)\tau ], \\ x ((n + l)\tau ^{ +} )\mathrm{e}^{ - (c_{2} + d_{3} + E_{1})(t - (n + l)\tau )},\quad t \in ((n + l)\tau,(n + 1)\tau ], \end{cases}\displaystyle \\ y(t) = \textstyle\begin{cases} \mathrm{e}^{ - d_{2}(t - n\tau )} [ \frac{c_{1}(1 - \mathrm{e}^{ - (c_{1} + d_{1} - d_{2})(t - n\tau )})}{c_{1} + d_{1} - d_{2}}x(n\tau ^{ +} ) + y(n\tau ^{ +} ) ],\\ \quad t \in (n\tau,(n + l)\tau ], \\ \mathrm{e}^{ - (d_{4} + E_{2})(t - (n + l)\tau )} [ \frac{c_{2}(1 - \mathrm{e}^{ - (c_{2} + d_{3} + E_{1} - d_{4} - E_{2})(t - (n + l)\tau )})}{c_{2} + d_{3} + E_{1} - d_{4} - E_{2}}x \\ \qquad{}\times ((n + l)\tau ^{ +} ) + y((n + l)\tau ^{ +} ) ], \\ \quad t \in ((n + l)\tau,(n + 1)\tau ]. \end{cases}\displaystyle \end{cases}\displaystyle \end{aligned}$$
(3.2)
Considering the third and fourth equations and the seventh and eighth equations of system (3.1), we obtain the stroboscopic map of system (3.1)
$$\begin{aligned} \textstyle\begin{cases} x((n + 1)\tau ^{ +} ) = (aA + C)x(n\tau ^{ +} ) + aBy(n\tau ^{ +} ) - b(Ax(n\tau ^{ +} ) + By(n\tau ^{ +} ))^{2}, \\ y((n + 1)\tau ^{ +} ) = Ax(n\tau ^{ +} ) + By(n\tau ^{ +} ), \end{cases}\displaystyle \end{aligned}$$
(3.3)
where
$$\begin{aligned} &A = \mathrm{e}^{ - (d_{4} + E_{2})(1 - l)\tau } [\frac{c_{2}(1 - u_{1})\mathrm{e}^{ - (c_{1} + d_{1})l\tau } (1 - \mathrm{e}^{ - (c_{2} + d_{3} + E_{1} - d_{4} - E_{2})(1 - l)\tau } )}{c_{2} + d_{3} + E_{1} - d_{4} - E_{2}} \\ &\phantom{A = }{}+ \frac{c_{1}(1 - u_{2})\mathrm{e}^{ - d_{2}l\tau } (1 - \mathrm{e}^{ - (c_{1} + d_{1} - d_{2})l\tau } )}{c_{1} + d_{1} - d_{2}}, \\ &B = (1 - u_{2})\mathrm{e}^{ - [d_{2}l\tau + (d_{4} + E_{2})(1 - l)\tau ]} < 1, \\ &C = (1 - u_{1})\mathrm{e}^{ - [(c_{1} + d_{1})l\tau + (c_{2} + d_{3} + E_{1})(1 - l)\tau ]} < 1. \end{aligned}$$
The system (3.3) has two fixed points as \(F_{1}(0,0)\) and \(F_{2}(x^{*},y^{*})\), where
$$\begin{aligned} \textstyle\begin{cases} x^{*} = \frac{(1 - B)[aA - (1 - B)(1 - C)]}{bA^{2}},\quad aA - (1 - B)(1 - C) > 0, \\ y^{*} = \frac{aA - (1 - B)(1 - C)}{bA},\quad aA - (1 - B)(1 - C) > 0. \end{cases}\displaystyle \end{aligned}$$
(3.4)
Theorem 1
(i) If \(aA - (1 - B)(1 - C) < 0\), the fixed point \(F_{1}(0,0)\) is globally asymptotically stable;
(ii) If \(aA - (1 - B)(1 - C) > 0\), the fixed point \(F_{2}(x^{*},y^{*})\) is globally asymptotically stable.
Proof
For convenience, we make a notation as \((x^{n},y^{n}) = (x(n\tau ^{ +} ),y(n\tau ^{ +} ))\). The linear form of (3.3) can be written as
$$\begin{aligned} \begin{pmatrix} x^{n + 1} \\ y^{n + 1} \end{pmatrix} = J_{1} \begin{pmatrix} x^{n} \\ y^{n} \end{pmatrix}. \end{aligned}$$
(3.5)
Obviously, the near dynamics of \(F_{1}(0,0)\) and \(F_{2}(x^{*},y^{*})\) of (3.3) are determined by the linear system (3.5). The stabilities of the two fixed points of (3.3) are determined by the eigenvalues of \(J_{1}\) less than 1. We can determine the eigenvalue of \(J_{1}\) less than 1, if \(J_{1}\) satisfies the Jury criteria [20]
$$\begin{aligned} 1 - \operatorname{tr}J_{1} + \operatorname{det}J_{1} > 0. \end{aligned}$$
(3.6)
(i) If \(aA - (1 - B)(1 - C) < 0\), \(F_{1}(0,0)\) is the unique fixed point of (3.3), we have
$$\begin{aligned} J_{1} = \begin{pmatrix} aA + C & aB \\ A & B \end{pmatrix}. \end{aligned}$$
(3.7)
Calculating
$$\begin{aligned} 1 - \operatorname{tr}J_{1} + \operatorname{det} J_{1}& = 1 - \bigl[(aA + C) + B\bigr] + \bigl[B(aA + C) - aAB\bigr] \\ &= 1 - aA - C - B + BC \\ &= - aA + (1 - B) (1 - C) \\ &= - \bigl[aA - (1 - B) (1 - C)\bigr] > 0. \end{aligned}$$
From the Jury criteria, \(F_{1}(0,0)\) is locally stable. Then, it is globally asymptotically stable.
(ii) If \(aA - (1 - B)(1 - C) > 0\), \(F_{1}(0,0)\) is obviously unstable, \(F_{2}(x^{*},y^{*})\) exists, and
$$\begin{aligned} J_{1} = \begin{pmatrix} aA + C - 2bA(Ax^{*} + By^{*}) & aB - 2bB(Ax^{*} + By^{*}) \\ A & B \end{pmatrix}. \end{aligned}$$
(3.8)
Calculating
$$\begin{aligned} 1 - \operatorname{tr}J_{1} + \det J_{1}={}& 1 - \bigl[aA + C - 2bA\bigl(Ax^{*} + By^{*}\bigr) + B\bigr] \\ &{}+\bigl\{ B\bigl[aA + C - 2bA\bigl(Ax^{*} + By^{*}\bigr) \bigr] - A\bigl[aB - 2bB\bigl(Ax^{*} + By^{*}\bigr)\bigr] \bigr\} \\ ={}& 1 - aA - C - B + BC + 2bA\bigl(Ax^{*} + By^{*}\bigr) \\ ={}&{ -} \bigl[aA + (1 - B) (1 - C)\bigr] + 2\bigl[aA - (1 - B) (1 - C)\bigr] \\ = {}&aA - (1 - B) (1 - C) > 0. \end{aligned}$$
From the Jury criteria, \(F_{2}(x^{*},y^{*})\) is locally stable. Then, it is globally asymptotically stable. This completes the proof. □
According to Theorem 1, and similar to reference [18], the following lemma can be easily proved.
Theorem 2
(i) If \(aA - (1 - B)(1 - C) < 0\), the triviality periodic solution \((0,0)\) of system (3.1) is globally asymptotically stable;
(ii) If \(aA - (1 - B)(1 - C) > 0\), the periodic solution \((\widetilde{x(t)},\widetilde{y(t)})\) of system (3.1) is globally asymptotically stable, where
$$\begin{aligned} \textstyle\begin{cases}\widetilde{x(t)} = \textstyle\begin{cases} x^{*}\mathrm{e}^{ - (c_{1} + d_{1})(t - n\tau )},\quad t \in (n\tau,(n + l)\tau ], \\ x^{**}\mathrm{e}^{ - (c_{2} + d_{3} + E_{1})(t - (n + l)\tau )},\quad t \in ((n + l)\tau,(n + 1)\tau ], \end{cases}\displaystyle \\ \widetilde{y(t)} = \textstyle\begin{cases} \mathrm{e}^{ - d_{2}(t - n\tau )} [ \frac{c_{1}(1 - \mathrm{e}^{ - (c_{1} + d_{1} - d_{2})(t - n\tau )})}{c_{1} + d_{1} - d_{2}}x^{*} + y^{*} ],\quad t \in (n\tau,(n + l)\tau ], \\ \mathrm{e}^{ - (d_{4} + E_{2})(t - (n + l)\tau )} [ \frac{c_{2}(1 - \mathrm{e}^{ - (c_{2} + d_{3} + E_{1} - d_{4} - E_{2})(t - (n + l)\tau )})}{c_{2} + d_{3} + E_{1} - d_{4} - E_{2}}x^{**} + y^{**} ], \\ \quad t \in ((n + l)\tau,(n + 1)\tau ], \end{cases}\displaystyle \end{cases}\displaystyle \end{aligned}$$
(3.9)
and
$$\begin{aligned} \textstyle\begin{cases} x^{**} = (1 - u_{1})\mathrm{e}^{ - (c_{1} + d_{1})l\tau } x^{*}, \\ y^{**} = (1 - u_{2})\mathrm{e}^{ - d_{2}l\tau } [ \frac{c_{1}(1 - \mathrm{e}^{ - (c_{1} + d_{1} - d_{2})l\tau } )}{c_{1} + d_{1} - d_{2}}x^{*} + y^{*} ]. \end{cases}\displaystyle \end{aligned}$$
Remark 3
From Theorem 2, For any \(\varepsilon > 0\), there exists a positive number \(t_{0}\), when \(t > t_{0}\), we have
$$\begin{aligned} &\widetilde{x(t)} - \varepsilon \le x(t) \le \widetilde{x(t)} + \varepsilon, \\ &\widetilde{y(t)} - \varepsilon \le y(t) \le \widetilde{y(t)} + \varepsilon, \end{aligned}$$
then
$$\begin{aligned} &m_{1} \le x(t) \le M_{1}, \\ & m_{2} \le y(t) \le M_{2}, \end{aligned}$$
where
$$\begin{aligned} &m_{1} = \bigl[ x^{*} + x^{**} \bigr] - \varepsilon, \\ &M_{1} = \bigl[ x^{*}\mathrm{e}^{ - (c_{1} + d_{1})l\tau } + x^{**}\mathrm{e}^{ - (c_{2} + d_{3} + E_{1})(1 - l)\tau } \bigr] + \varepsilon, \\ &m_{2} = \bigl[ y^{*} + y^{**} \bigr] - \varepsilon, \\ &M_{2} = \biggl\{ \mathrm{e}^{ - d_{2}l\tau } \biggl[ \frac{c_{1}(1 - \mathrm{e}^{ - (c_{1} + d_{1} - d_{2})l\tau } )}{c_{1} + d_{1} - d_{2}}x^{*} + y^{*} \biggr] \\ & \phantom{M_{2} =}{}+\mathrm{e}^{ - (d_{4} + E_{2})(1 - l)\tau } \biggl[ \frac{c_{2}(1 - \mathrm{e}^{ - (c_{2} + d_{3} + E_{1} - d_{4} - E_{2})(1 - l)\tau } )}{c_{2} + d_{3} + E_{1} - d_{4} - E_{2}}x^{**} + y^{**} \biggr] \biggr\} + \varepsilon. \end{aligned}$$
Another subsystem of system (2.1) is also obtained as follows:
$$\begin{aligned} \textstyle\begin{cases} \left . \textstyle\begin{array}{l} \frac{dc_{o}(t)}{dt} = fc_{e1}(t) - (g + m)c_{o}(t), \\ \frac{dc_{e1}(t)}{dt} = - h_{1}c_{e1}(t), \\ \frac{dc_{e2}(t)}{dt} = - h_{2}c_{e2}(t), \end{array}\displaystyle \right \}\quad t \in \bigl(n\tau,(n + 1)\tau \bigr], \\ \left . \textstyle\begin{array}{l} \Delta c_{o}(t) = 0, \\ \Delta c_{e1}(t) = d(c_{e2}(t) - c_{e1}(t)) + v_{1}, \\ \Delta c_{e2}(t) = d(c_{e1}(t) - c_{e2}(t)) + v_{2} \end{array}\displaystyle \right \}\quad t = n\tau. \end{cases}\displaystyle \end{aligned}$$
(3.10)
The first, second and third equations of system (3.10) integrate over the interval \((n\tau,(n + 1)\tau]\), we have
$$\begin{aligned} \textstyle\begin{cases} c_{o}(t) = \mathrm{e}^{ - (g + m)(t - n\tau )} [ \frac{f(1 - \mathrm{e}^{ - (h_{1} - g - m)(t - n\tau )})}{h_{1} - g - m}c_{e1}(n\tau ^{ +} ) + c_{o}(n\tau ^{ +} ) ],\\ \quad t \in (n\tau,(n + 1)\tau ], \\ c_{e1}(t) = c_{e1}(n\tau ^{ +} )\mathrm{e}^{ - h_{1}(t - n\tau )},\quad t \in (n\tau,(n + 1)\tau ], \\ c_{e2}(t) = c_{e2}(n\tau ^{ +} )\mathrm{e}^{ - h_{2}(t - n\tau )},\quad t \in (n\tau,(n + 1)\tau ]. \end{cases}\displaystyle \end{aligned}$$
(3.11)
Considering the fourth, fifth and sixth equations of system (3.10), the stroboscopic map of system (3.11) is obtained as
$$\begin{aligned} \textstyle\begin{cases} c_{o}((n+1)\tau ^{ +}) = \mathrm{e}^{ - (g + m)\tau } [ \frac{f(1 - \mathrm{e}^{ - (h_{1} - g - m) \tau })}{h_{1} - g - m}c_{e1}(n\tau ^{ +} ) + c_{o}(n\tau ^{ +} ) ],\\ c_{e1}((n+1)\tau ^{ +}) =(1-d) c_{e1}(n\tau ^{ +}) \mathrm{e}^{ - h_{1}n\tau}+dc_{e2}(n\tau ^{ +}) \mathrm{e}^{ - h_{2}n\tau}+v_{1}, \\ c_{e2}((n+1)\tau ^{ +}) =(1-d) c_{e2}(n\tau ^{ +}) \mathrm{e}^{ - h_{2}n\tau}+dc_{e1}(n\tau ^{ +}) \mathrm{e}^{ - h_{1}n\tau}+v_{2}. \end{cases}\displaystyle \end{aligned}$$
(3.12)
The unique fixed point of (3.12) is obtained as \(F(c_{o}^{*},c_{e1}^{*},c_{e2}^{*})\), where
$$\begin{aligned} \textstyle\begin{cases} c_{o}^{*} =\frac{\mathrm{e}^{ - (g + m)\tau }f(1-\mathrm{e}^{ - (h_{1}-g-m)\tau}){v_{2}d\mathrm{e}^{ - h_{2}\tau } + v_{1}[ 1 - (1 -d)\mathrm{e}^{ - h_{2}\tau }]} }{(h_{1} - g - m)(1 -\mathrm{e}^{ - (g + m)\tau })[ 1 - (1 - d)\mathrm{e}^{ - h_{1}\tau }](1 - \mathrm{e}^{ - h_{2}\tau } ) + d\mathrm{e}^{ - h_{2}\tau } (1 -\mathrm{e}^{ - h_{1}\tau } ) },\\ c_{e1}^{*} =\frac{v_{2}d\mathrm{e}^{ - h_{2}\tau } + v_{1}[ 1 - (1 -d)\mathrm{e}^{ - h_{2}\tau }] }{ [1 - (1 - d)\mathrm{e}^{ - h_{1}\tau }](1 - \mathrm{e}^{ - h_{2}\tau } ) + d\mathrm{e}^{ - h_{2}\tau } (1 -\mathrm{e}^{ - h_{1}\tau } )},\\ c_{e2}^{*} =\frac{v_{1}d\mathrm{e}^{ - h_{1}\tau } + v_{2}[ 1 - (1 -d)\mathrm{e}^{ - h_{1}\tau }] }{ [1 - (1 - d)\mathrm{e}^{ - h_{1}\tau }](1 - \mathrm{e}^{ - h_{2}\tau } ) + d\mathrm{e}^{ - h_{2}\tau } (1 -\mathrm{e}^{ - h_{1}\tau } )} . \end{cases}\displaystyle \end{aligned}$$
(3.13)
Theorem 4
If \(d > 1/2\), the unique fixed point \(F(c_{o}^{*},c_{e1}^{*},c_{e2}^{*})\) is globally asymptotically stable.
Proof
Making a notation as \((c_{o}^{n},c_{e1}^{n},c_{e2}^{n}) = (c_{o}(n\tau ^{ +} ),c_{e1}(n\tau ^{ +} ),c_{e2}(n\tau ^{ +} ))\), we rewrite the linear form of (3.12) as
$$\begin{aligned} \begin{pmatrix} c_{o}^{n + 1} \\ c_{e1}^{n + 1} \\ c_{e2}^{n + 1} \end{pmatrix} = J_{2} \begin{pmatrix} c_{o}^{n} \\ c_{e1}^{n} \\ c_{e2}^{n} \end{pmatrix}. \end{aligned}$$
(3.14)
Obviously, the near dynamics of \(F(c_{o}^{*},c_{e1}^{*},c_{e2}^{*})\) is determined by the linear system (3.14). The stabilities of the fixed point of (3.12) are determined by the eigenvalues of \(J_{2}\) less than 1. According to the condition of this theorem and \(0 < \mathrm{e}^{ - h_{1}\tau } < 1\), \(0 < \mathrm{e}^{ - h_{2}\tau } < 1\), it is easy to obtain the eigenvalues of
$$\begin{aligned} J_{2} = \begin{pmatrix} \mathrm{e}^{ - (g + m)\tau } & \mathrm{e}^{ - (g + m)\tau } \frac{f(1 - \mathrm{e}^{ - (h_{1} - g - m)\tau } )}{h_{1} - g - m} & 0 \\ 0 & (1 - d)\mathrm{e}^{ - h_{1}\tau } & d\mathrm{e}^{ - h_{2}\tau } \\ 0 & d\mathrm{e}^{ - h_{1}\tau } & (1 - d)\mathrm{e}^{ - h_{2}\tau } \end{pmatrix}, \end{aligned}$$
(3.15)
which are
$$\begin{aligned} & \lambda _{1} = \mathrm{e}^{ - (g + m)\tau } < 1, \\ &\lambda _{2} = \frac{(1 - d)(\mathrm{e}^{ - h_{1}\tau } + \mathrm{e}^{ - h_{2}\tau } ) + \sqrt{ [ d(\mathrm{e}^{ - h_{1}\tau } + \mathrm{e}^{ - h_{2}\tau } ) ]^{2} - 4(1 - 2d)\mathrm{e}^{ - (h_{1} + h_{2})\tau }}}{2} \\ &\phantom{\lambda _{2}} < \frac{(1 - d)(\mathrm{e}^{ - h_{1}\tau } + \mathrm{e}^{ - h_{2}\tau } ) + d(\mathrm{e}^{ - h_{1}\tau } + \mathrm{e}^{ - h_{2}\tau } )}{2} \\ &\phantom{\lambda _{2}} = \frac{\mathrm{e}^{ - h_{1}\tau } + \mathrm{e}^{ - h_{2}\tau }}{2} < 1, \\ &\lambda _{3} = \frac{(1 - d)(\mathrm{e}^{ - h_{1}\tau } + \mathrm{e}^{ - h_{2}\tau } ) - \sqrt{ [ d(\mathrm{e}^{ - h_{1}\tau } + \mathrm{e}^{ - h_{2}\tau } ) ]^{2} - 4(1 - 2d)\mathrm{e}^{ - (h_{1} + h_{2})\tau }}}{2} \\ &\phantom{\lambda _{3}}< \frac{(1 - d)(\mathrm{e}^{ - h_{1}\tau } + \mathrm{e}^{ - h_{2}\tau } )}{2} < 1. \end{aligned}$$
Hence, \(F(c_{o}^{*},c_{e1}^{*},c_{e2}^{*})\) is locally stable. Then, it is globally asymptotically stable. □
Theorem 5
If \(d > 1/2\), the periodic solution \((\widetilde{c_{o}(t)},\widetilde{c_{e1}(t)},\widetilde{c_{e2}(t)})\) of system (3.10) is globally asymptotically stable, where
$$\begin{aligned} \textstyle\begin{cases} \widetilde{c_{o}(t)} = \mathrm{e}^{ - (g + m)(t - n\tau )} [ \frac{f(1 - \mathrm{e}^{ - (h_{1} - g - m)(t - n\tau )})}{h_{1} - g - m}c_{e1}^{*} + c_{o}^{*} ],\quad t \in (n\tau,(n + 1)\tau ], \\ \widetilde{c_{e1}(t)} = c_{e1}^{*}\mathrm{e}^{ - h_{1}(t - n\tau )},\quad t \in (n\tau,(n + 1)\tau ], \\ \widetilde{c_{e2}(t)} = c_{e2}^{*}\mathrm{e}^{ - h_{2}(t - n\tau )},\quad t \in (n\tau,(n + 1)\tau ], \end{cases}\displaystyle \end{aligned}$$
(3.16)
Here, \(c_{o}^{*},c_{e1}^{*},c_{e2}^{*}\) are defined as (3.13).
Remark 6
From Theorem 5, for any \(\varepsilon > 0\), there exists a positive number \(t_{0}\), when \(t > t_{0}\), we have
$$\begin{aligned} & \widetilde{c_{o}(t)} - \varepsilon \le c_{o}(t) \le \widetilde{c_{o}(t)} + \varepsilon, \\ &\widetilde{c_{e1}(t)} - \varepsilon \le c_{e1}(t) \le \widetilde{c_{e1}(t)} + \varepsilon, \\ &\widetilde{c_{e2}(t)} - \varepsilon \le c_{e2}(t) \le \widetilde{c_{e2}(t)} + \varepsilon, \end{aligned}$$
then
$$\begin{aligned} & m_{o} \le c_{o}(t) \le M_{o}, \\ &m_{e1} \le c_{e1}(t) \le M_{e1}, \\ & m_{e2} \le c_{e2}(t) \le M_{e2}, \end{aligned}$$
where
$$\begin{aligned} & m_{0} = \frac{f}{h_{1} - g - m}c_{e1}^{*} + c_{o}^{*} - \varepsilon, \\ &M_{0} = \mathrm{e}^{ - (g + m)\tau } \biggl[ \frac{f(1 - \mathrm{e}^{ - (h_{1} - g - m)\tau } )}{h_{1} - g - m}c_{e1}^{*} + c_{o}^{*} \biggr] + \varepsilon, \\ &m_{e1} = c_{e1}^{*} - \varepsilon, \\ &M_{e1} = c_{e1}^{*}\mathrm{e}^{ - h_{1}\tau } + \varepsilon, \\ &m_{e2} = c_{e2}^{*} - \varepsilon, \\ &M_{e2} = c_{e2}^{*}\mathrm{e}^{ - h_{2}\tau } + \varepsilon. \end{aligned}$$
Considering the first and second equations and the eleventh and twelfth equations of system (2.1), we obtain
$$\begin{aligned} \textstyle\begin{cases} \left . \textstyle\begin{array}{l} \frac{dx(t)}{dt} \le - (c_{1} + d_{1})x(t), \\ \frac{dy(t)}{dt} \le c_{1}x(t) - d_{2}y(t), \end{array}\displaystyle \right \} \quad t \in \bigl(n\tau,(n + l)\tau\bigr], \\ \left . \textstyle\begin{array}{l} \Delta x(t) = - u_{1}x(t), \\ \Delta y(t) = - u_{2}y(t), \end{array}\displaystyle \right \} \quad t = (n + l)\tau, \\ \left . \textstyle\begin{array}{l} \frac{dx(t)}{dt} \le - (c_{2} + d_{3} + E_{1})x(t), \\ \frac{dy(t)}{dt} \le c_{2}x(t) - (d_{4} + E_{2})y(t), \end{array}\displaystyle \right \}\quad t \in \bigl((n + l)\tau,(n + 1)\tau \bigr], \\ \left . \textstyle\begin{array}{l} \Delta x(t) = y(t)(a - by(t)), \\ \Delta y(t) = 0, \end{array}\displaystyle \right \} \quad t = (n + 1)\tau, \end{cases}\displaystyle \end{aligned}$$
(3.17)
and
$$\begin{aligned} \textstyle\begin{cases} \left . \textstyle\begin{array}{l} \frac{dx(t)}{dt} \ge - (c_{1} + d_{1} + \beta _{1}(\widetilde{c_{o}(t)} + \varepsilon ))x(t), \\ \frac{dy(t)}{dt} \ge c_{1}x(t) - (d_{2} + \beta _{2}(\widetilde{c_{o}(t)} + \varepsilon ))y(t), \end{array}\displaystyle \right \}\quad t \in \bigl(n\tau,(n + l)\tau \bigr], \\ \left . \textstyle\begin{array}{l} \Delta x(t) = - u_{1}x(t), \\ \Delta y(t) = - u_{2}y(t), \end{array}\displaystyle \right \} \quad t = (n + l)\tau, \\ \left . \textstyle\begin{array}{l} \frac{dx(t)}{dt} \ge - (c_{2} + d_{3} + E_{1} + \beta _{1}(\widetilde{c_{o}(t)} + \varepsilon ))x(t), \\ \frac{dy(t)}{dt} \ge c_{2}x(t) - (d_{4} + E_{2} + \beta _{2}(\widetilde{c_{o}(t)} + \varepsilon ))y(t), \end{array}\displaystyle \right \}\quad t \in \bigl((n + l)\tau,(n + 1)\tau \bigr], \\ \left . \textstyle\begin{array}{l} \Delta x(t) = y(t)(a - by(t)), \\ \Delta y(t) = 0, \end{array}\displaystyle \right \} \quad t = (n + 1)\tau. \end{cases}\displaystyle \end{aligned}$$
(3.18)
Then, we can obtain the comparative differential equation of system (3.17)
$$\begin{aligned} \textstyle\begin{cases} \left . \textstyle\begin{array}{l} \frac{dx_{1}(t)}{dt} = - (c_{1} + d_{1})x_{1}(t), \\ \frac{dy_{1}(t)}{dt} = c_{1}x_{1}(t) - d_{2}y_{1}(t), \end{array}\displaystyle \right \} \quad t \in \bigl(n\tau,(n + l)\tau \bigr], \\ \left . \textstyle\begin{array}{l} \Delta x_{1}(t) = - u_{1}x_{1}(t), \\ \Delta y_{1}(t) = - u_{2}y_{1}(t), \end{array}\displaystyle \right \} \quad t = (n + l)\tau, \\ \left . \textstyle\begin{array}{l} \frac{dx_{1}(t)}{dt} = - (c_{2} + d_{3} + E_{1})x_{1}(t), \\ \frac{dy_{1}(t)}{dt} = c_{2}x_{1}(t) - (d_{4} + E_{2})y_{1}(t), \end{array}\displaystyle \right \} \quad t \in \bigl((n + l)\tau,(n + 1)\tau \bigr], \\ \left . \textstyle\begin{array}{l} \Delta x_{1}(t) = y_{1}(t)(a - by_{1}(t)), \\ \Delta y_{1}(t) = 0, \end{array}\displaystyle \right \}\quad t = (n + 1)\tau, \end{cases}\displaystyle \end{aligned}$$
(3.19)
and the comparative differential equation of system (3.18)
$$\begin{aligned} \textstyle\begin{cases} \left . \textstyle\begin{array}{l} \frac{dx_{2}(t)}{dt} = - (c_{1} + d_{1} + \beta _{1}(\widetilde{c_{o}(t)} + \varepsilon ))x_{2}(t), \\ \frac{dy_{2}(t)}{dt} = c_{1}x(t) - (d_{2} + \beta _{2}(\widetilde{c_{o}(t)} + \varepsilon ))y_{2}(t), \end{array}\displaystyle \right \} \quad t \in \bigl(n\tau,(n + l)\tau \bigr], \\ \left . \textstyle\begin{array}{l} \Delta x_{2}(t) = - u_{1}x_{2}(t), \\ \Delta y_{2}(t) = - u_{2}y_{2}(t), \end{array}\displaystyle \right \} \quad t = (n + l)\tau, \\ \left . \textstyle\begin{array}{l} \frac{dx_{2}(t)}{dt} = - (c_{2} + d_{3} + E_{1} + \beta _{1}(\widetilde{c_{o}(t)} + \varepsilon ))x_{2}(t), \\ \frac{dy_{2}(t)}{dt} = c_{2}x_{2}(t) - (d_{4} + E_{2} + \beta _{2}(\widetilde{c_{o}(t)} + \varepsilon ))y_{2}(t), \end{array}\displaystyle \right \} \quad t \in \bigl((n + l)\tau,(n + 1)\tau \bigr], \\ \left . \textstyle\begin{array}{l} \Delta x_{2}(t) = y_{2}(t)(a - by_{2}(t)), \\ \Delta y_{2}(t) = 0, \end{array}\displaystyle \right \}\quad t = (n + 1)\tau. \end{cases}\displaystyle \end{aligned}$$
(3.20)
Similarly with Theorem 1 and Theorem 2, we have:
Theorem 7
(i) If \(aA_{1} - (1 - B_{1})(1 - C_{1}) < 0\), the triviality periodic solution of system (3.20) is globally asymptotically stable;
(ii) If \(aA_{1} - (1 - B_{1})(1 - C_{1}) > 0\), the triviality periodic solution of system (3.20) is unstable,
and the periodic solution \(( \overline{x_{2}(t)},\overline{y_{2}(t)} )\) of system (3.20) is globally asymptotically stable, where
$$\begin{aligned} \textstyle\begin{cases} \overline{x_{2}(t)} = \textstyle\begin{cases} x_{2}^{*}\mathrm{e}^{ - (c_{1} + d_{1} + \beta _{1}M_{o})(t - n\tau )},\quad t \in (n\tau,(n + l)\tau ], \\ x_{2}^{**}\mathrm{e}^{ - (c_{2} + d_{3} + E_{1} + \beta _{1}M_{o})(t - (n + l)\tau )},\quad t \in ((n + l)\tau,(n + 1)\tau ], \end{cases}\displaystyle \\ \overline{y_{2}(t)} = \textstyle\begin{cases} \mathrm{e}^{ - (d_{2} + \beta _{2}M_{o})(t - n\tau )} [ \frac{c_{1}(1 - \mathrm{e}^{ - (c_{1} + d_{1} + \beta _{1}M_{o} - d_{2} - \beta _{2}M_{o})(t - n\tau )})}{c_{1} + d_{1} + \beta _{1}M_{o} - d_{2} - \beta _{2}M_{o}}x_{2}^{*} + y_{2}^{*} ],\\ \quad t \in (n\tau,(n + l)\tau ], \\ \mathrm{e}^{ - (d_{4} + E_{2} + \beta _{2}M_{o})(t - (n + l)\tau )} \\ \qquad{}\times[ \frac{c_{2}(1 - \mathrm{e}^{ - (c_{2} + d_{3} + E_{1} + \beta _{1}M_{o} - d_{4} - E_{2} - \beta _{2}M_{o})(t - (n + l)\tau )})}{c_{2} + d_{3} + E_{1} + \beta _{1}M_{o} - d_{4} - E_{2} - \beta _{2}M_{o}}x_{2}^{**} + y_{2}^{**} ], \\ \quad t \in ((n + l)\tau,(n + 1)\tau ], \end{cases}\displaystyle \end{cases}\displaystyle \end{aligned}$$
(3.21)
Here, \(x_{2}^{*},y_{2}^{*},x_{2}^{**},y_{2}^{**}\) are defined as follows:
$$\begin{aligned} \textstyle\begin{cases} x_{2}^{*} = \frac{(1 - B_{1})[aA_{1} - (1 - B_{1})(1 - C_{1})]}{bA_{1}^{2}},\quad aA_{1} - (1 - B_{1})(1 - C_{1}) > 0, \\ y_{2}^{*} = \frac{aA_{1} - (1 - B_{1})(1 - C_{1})}{bA_{1}},\quad aA_{1} - (1 - B_{1})(1 - C_{1}) > 0, \end{cases}\displaystyle \end{aligned}$$
(3.22)
and
$$\begin{aligned} \textstyle\begin{cases} x_{2}^{**} = (1 - u_{1})\mathrm{e}^{ - (c_{1} + d_{1} + \beta _{1}M_{o})l\tau } x_{2}^{*}, \\ y_{2}^{**} = (1 - u_{2})\mathrm{e}^{ - (d_{2} + \beta _{2}M_{o})l\tau } [ \frac{c_{1}(1 - \mathrm{e}^{ - (c_{1} + d_{1} + \beta _{1}M_{o} - d_{2} - \beta _{2}M_{o})l\tau } )}{c_{1} + d_{1} + \beta _{1}M_{o} - d_{2} - \beta _{2}M_{o}}x_{2}^{*} + y_{2}^{*} ]. \end{cases}\displaystyle , \end{aligned}$$
(3.23)
where
$$\begin{aligned} A_{1} ={}& \mathrm{e}^{ - (d_{4} + E_{2} + \beta _{2}M_{o})(1 - l)\tau } \biggl[ \frac{c_{2}(1 - u_{1})\mathrm{e}^{ - (c_{1} + d_{1} + \beta _{1}M_{o})l\tau } (1 - \mathrm{e}^{ - (c_{2} + d_{3} + E_{1} + \beta _{1}M_{o} - d_{4} - E_{2} - \beta _{2}M_{o})(1 - l)\tau } )}{c_{2} + d_{3} + E_{1} + \beta _{1}M_{o} - d_{4} - E_{2} - \beta _{2}M_{o}} \\ &{} +\frac{c_{1}(1 - u_{2})\mathrm{e}^{ - (d_{2} + \beta _{2}M_{o})l\tau } (1 - \mathrm{e}^{ - (c_{1} + d_{1} + \beta _{1}M_{o} - d_{2} - \beta _{2}M_{o})l\tau } )}{c_{1} + d_{1} + \beta _{1}M_{o} - d_{2} - \beta _{2}M_{o}} \biggr], \\ B_{1} ={}& (1 - u_{2})\mathrm{e}^{ - [ (d_{2} + \beta _{2}M_{o})l\tau + (c_{1} + d_{1} + \beta _{1}M_{o} - d_{2} - \beta _{2}M_{o})(1 - l)\tau ]} < 1, \\ C_{1} ={}& (1 - u_{1})\mathrm{e}^{ - [ (c_{1} + d_{1} + \beta _{1}M_{o})l\tau + (c_{2} + d_{3} + E_{1} + \beta _{1}M_{o})(1 - l)\tau ]} < 1. \end{aligned}$$
Remark 8
From Theorem 7, For any \(\varepsilon > 0\), there exists a positive number \(t_{0}\), such that for \(t > t_{0}\),
$$\begin{aligned} \overline{x_{2}(t)} - \varepsilon \le x_{2}(t) \le \overline{x_{2}(t)} + \varepsilon, \\ \overline{y_{2}(t)} - \varepsilon \le y_{2}(t) \le \overline{y_{2}(t)} + \varepsilon, \end{aligned}$$
then
$$\begin{aligned} m_{21} \le x_{2}(t) \le M_{21}, \\ m_{22} \le y_{2}(t) \le M_{22}, \end{aligned}$$
where
$$\begin{aligned} & m_{21} = \bigl[ x_{2}^{*} + x_{2}^{**} \bigr] - \varepsilon, \\ &M_{21} = \bigl[ x_{2}^{*}\mathrm{e}^{ - (c_{1} + d_{1} + \beta _{1}M_{o})l\tau } + x_{2}^{**}\mathrm{e}^{ - (c_{2} + d_{3} + E_{1} + \beta _{1}M_{o})(1 - l)\tau } \bigr] + \varepsilon, \\ &m_{22} = \bigl[ y_{2}^{*} + y_{2}^{**} \bigr] - \varepsilon, \\ &M_{22} = \mathrm{e}^{ - (d_{2} + \beta _{2}M_{o})l\tau } \biggl[ \frac{c_{1}(1 - \mathrm{e}^{ - (c_{1} + d_{1} + \beta _{1}M_{o} - d_{2} - \beta _{2}M_{o})l\tau } )}{c_{1} + d_{1} + \beta _{1}M_{o} - d_{2} - \beta _{2}M_{o}}x_{2}^{*} + y_{2}^{*} \biggr] \\ &\phantom{M_{22} =}{}+\mathrm{e}^{ - (d_{4} + E_{2} + \beta _{2}M_{o})(1 - l)\tau } \biggl[ \frac{c_{2}(1 - \mathrm{e}^{ - (c_{2} + d_{3} + E_{1} + \beta _{1}M_{o} - d_{4} - E_{2} - \beta _{2}M_{o})(1 - l)\tau } )}{c_{2} + d_{3} + E_{1} + \beta _{1}M_{o} - d_{4} - E_{2} - \beta _{2}M_{o}}x_{2}^{**} + y_{2}^{**} \biggr] + \varepsilon. \end{aligned}$$
From the above theorems and remarks, we present an important theorem in this paper.
Theorem 9
(i) \(aA - (1 - B)(1 - C) < 0\), the population \(x(t)\) and \(y(t)\) go extinct;
(ii) If \(aA_{1} - (1 - B_{1})(1 - C_{1}) > 0\), the system is permanent.
Proof
(i) In the condition of \(aA - (1 - B)(1 - C) < 0\), the trivial periodic solution is globally asymptotically stable, that is when \(t \to \infty \), we have \(x(t) \to 0\) and \(y(t) \to 0\). According to (3.17), (3.19) and comparison with the theorem of the impulsive equation [21], we know that \(0 \le x(t) \le x_{1}(t) = x(t)\) and \(0 \le y(t) \le y_{1}(t) = y(t)\). These show that the populations \(x(t)\) and \(y(t)\) go extinct.
(ii) By the condition \(aA_{1} - (1 - B_{1})(1 - C_{1}) > 0\), it is easy to show that \(aA - (1 - B)(1 - C) > 0\). According to (18)–(20) and with the comparison theorem of the impulsive equation [21], we can obtain that \(\overline{x_{2}(t)} - \varepsilon \le x_{2}(t) \le x(t),x(t) \le x_{1}(t) \le \widetilde{x(t)} + \varepsilon \). From Remark 3 and Remark 8, we have \(m_{21} \le x_{2}(t)\), \(x_{1}(t) \le M_{1}\), then \(m_{21} \le x(t) \le M_{1}\). Similarly, \(m_{22} \le y(t) \le M_{2}\), From Remark 6, we have \(m_{o} \le c_{o}(t) \le M_{o},m_{e1} \le c_{e1}(t) \le M_{e1},m_{e2} \le c_{e2}(t) \le M_{e2}\). This completes the proof. □