In this part, we begin by presenting a new definition, namely lacunary statistical boundedness on time scale. We then give some results related to this concept.
Definition 2.1
Let \(\theta = ( {{k_{r}}} )\) be a lacunary sequence on \(\mathbb{T}\) and \(f:\mathbb{T} \to \mathbb{R}\) be a Δ-measurable function. Then f is said to be lacunary statistically bounded on \(\mathbb{T}\) if there exists a number \(M>0\) such that
$$ \lim_{r \to \infty } \frac{{{\mu _{\Delta }} ( { \{ {s \in {{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \vert {f ( s )} \vert > M} \} } )}}{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}} = 0, $$
i.e., \(\vert {f ( s )} \vert \le M\) (almost all s with respect to θ). The set of all lacunary statistically bounded functions on \(\mathbb{T}\) is denoted by \({S_{\theta - \mathbb{T}}} ( B )\).
Remark 2.1
-
(i)
If we take \(\mathbb{T} = \mathbb{N}\) in Definition 2.1, then lacunary statistical boundedness on \(\mathbb{T}\) reduces to lacunary statistical boundedness of sequences which is introduced in [19].
-
(ii)
If we choose \(\mathbb{T} = [ {a,\infty } )\) (\(a > 1\)) in Definition 2.1, then lacunary statistical boundedness on \(\mathbb{T}\) reduces to lacunary statistical boundedness of measurable functions which is introduced in [21].
Theorem 2.1
Every lacunary statistically convergent function on \(\mathbb{T}\) is lacunary statistically bounded on \(\mathbb{T}\), but the converse does not need to be true.
Proof
Let \(f:\mathbb{T} \to \mathbb{R}\) be lacunary statistically convergent to M. Then, for each \(\varepsilon > 0\), we have
$$\lim_{r \to \infty } \frac{{{\mu _{\Delta }} ( { \{ {s \in {{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \vert {f ( s ) - M} \vert > \varepsilon } \} } )}}{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}} = 0. $$
From the fact that
$$ \bigl\{ {s \in {{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > \varepsilon + M} \bigr\} \subseteq \bigl\{ {s \in {{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s ) - M} \bigr\vert > \varepsilon } \bigr\} , $$
we obtain that \(\vert {f ( s )} \vert \le \varepsilon + M\) (almost all s with respect to θ) which is the desired result. For the converse, we consider the following example: Let \(f ( s ) = { ( { - 1} )^{s}}\) be a function where \(s \in \mathbb{T} = \mathbb{N}\). Then f is lacunary statistically bounded, but it is not a lacunary statistically convergent function. □
Theorem 2.2
Let \(\theta = ( {{k_{r}}} )\) be a lacunary sequence on \(\mathbb{T}\) and \(f:\mathbb{T} \to \mathbb{R}\) be a Δ-measurable function. Then f is lacunary statistically bounded if and only if there exists a bounded function \(g:\mathbb{T} \to \mathbb{R}\) such that \(f ( s ) = g ( s )\) almost all s with respect to θ.
Proof
First assume that f is lacunary statistically bounded. Then there exists \(M \ge 0\) such that \({\delta _{\theta - \mathbb{T}}} ( K ) = 0\), where \(K = \{ {s \in \mathbb{T}: \vert {f ( s )} \vert > M} \} \). Let us consider the function \(g:\mathbb{T} \to \mathbb{R}\) defined as follows:
$$g ( s ) = \textstyle\begin{cases} f ( s ), & \text{if } s \notin K; \\ 0, & \text{otherwise}. \end{cases} $$
It is clear that g is a Δ-measurable bounded function, and \(f ( s ) = g ( s )\) almost all s with respect to θ. Conversely, since g is bounded, there exists \(L \ge 0\) such that \(\vert {g ( s )} \vert \le L\) for all \(s \in \mathbb{T}\). Let \(D = \{ {s \in \mathbb{T}:f ( s ) \ne g ( s )} \} \). As \({\delta _{\theta - \mathbb{T}}} ( D ) = 0\), so \(\vert {f ( s )} \vert \le L\) almost all s with respect to θ. This means that f is lacunary statistically bounded. □
Theorem 2.3
Let \(\theta = ( {{k_{r}}} )\) be a lacunary sequence on \(\mathbb{T}\). Then we have
$$ {S_{\mathbb{T}}} ( B ) \subset {S_{\theta - \mathbb{T}}} ( B ) \quad \Leftrightarrow \quad \mathop{\lim \inf } _{r \to \infty } \frac{{\sigma ( {{k_{r}}} )}}{{\sigma ( {{k_{r - 1}}} )}} > 1. $$
Proof
Sufficiency. The sufficiency part of this theorem can be proved using a similar technique to Lemma 3.1 of [30].
Necessity. Conversely, assume that \(\mathop{\lim \inf }_{r \to \infty } \frac{{\sigma ( {{k_{r}}} )}}{{\sigma ( {{k_{r - 1}}} )}} = 1\). Let us now select a subsequence \(( {{k_{r ( j )}}} )\) of \(\theta = ( {{k_{r}}} )\) satisfying
$$\frac{{\sigma ( {{k_{r ( j )}}} ) - {t_{0}}}}{{\sigma ( {{k_{r ( j ) - 1}}} ) - {t_{0}}}} < 1 + \frac{1}{j} \quad \text{and}\quad \frac{{\sigma ( {{k_{r ( j ) - 1}}} ) - {t_{0}}}}{{\sigma ( {{k_{r ( {j - 1} )}}} ) - {t_{0}}}} > j, $$
where \(r ( j ) > r ( {j - 1} ) + 1\).
Let us define Δ-measurable function \(f:\mathbb{T} \to \mathbb{R}\) by
$$f ( s ) = \textstyle\begin{cases} s,\quad s \in { ( {{k_{r ( j ) - 1}},{k_{r ( j )}}} ]_{\mathbb{T}}} \quad \text{for } j = 1 ,2,3, \ldots ; \\ 0, \quad \text{otherwise}. \end{cases} $$
Now, for any \(M > 0\), there exists \({j_{0}} \in \mathbb{N}\) such that \({k_{r ( {{j_{0}}} ) - 1}} > M\). If \(r = r ( j )\), we have
$$\begin{aligned}& \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( {{j_{0}}} ) - 1}},{k_{r ( {{j_{0}}} )}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} ( { \bigl\{ {s \in {{ \bigl( {{k_{r ( {{j_{0}}} ) - 1}},{k_{r ( {{j_{0}}} )}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) \\& \quad \ge \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( {{j_{0}}} ) - 1}},{k_{r ( {{j_{0}}} )}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} ( { \bigl\{ {s \in {{ \bigl( {{k_{r ( {{j_{0}}} ) - 1}},{k_{r ( {{j_{0}}} )}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > {k_{r ( {{j_{0}}} ) - 1}}} \bigr\} } \bigr) = 1, \end{aligned}$$
and therefore
$$ \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},{k_{r ( j )}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} ( { \bigl\{ {s \in {{ \bigl( {{k_{r ( j ) - 1}},{k_{r ( j )}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) = 1 $$
for all \(j \ge {j_{0}}\). Also, if \(r \ne r ( j )\), then we get
$$ \frac{{{\mu _{\Delta }} ( { \{ {s \in {{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \vert {f ( s )} \vert > M} \} } )}}{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}} = 0. $$
Hence, \(f \notin {S_{\theta - \mathbb{T}}} ( B )\).
Indeed, for any sufficiently \(t \in \mathbb{T}\), we can find a unique \(j \in \mathbb{N}\) for which \({k_{r ( j ) - 1}} < t \le {k_{r ( {j + 1} ) - 1}}\), and we can write
$$\begin{aligned}& \frac{1}{{{\mu _{\Delta }} ( {{{ [ {{t_{0}},t} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} \biggl( { \biggl\{ {s \in {{ [ {{t_{0}},t} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > \frac{{{t_{0}}}}{2}} \biggr\} } \biggr) \\& \quad \le \frac{1}{{{\mu _{\Delta }} ( {{{ [ {{t_{0}},{k_{r ( j ) - 1}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} \biggl( { \biggl\{ {s \in {{ [ {{t_{0}},{k_{r ( {j - 1} )}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > \frac{{{t_{0}}}}{2}} \biggr\} } \biggr) \\& \qquad {}+ \frac{1}{{{\mu _{\Delta }} ( {{{ [ {{t_{0}},{k_{r ( j ) - 1}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} \biggl( { \biggl\{ {s \in {{ ( {{k_{r ( j ) - 1}},{k_{r ( j )}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > \frac{{{t_{0}}}}{2}} \biggr\} } \biggr) \\& \quad = \frac{{\sigma ( {{k_{r ( {j - 1} )}}} ) - {t_{0}}}}{{\sigma ( {{k_{r ( j ) - 1}}} ) - {t_{0}}}} + \frac{{\sigma ( {{k_{r ( j )}}} ) - \sigma ( {{k_{r ( j ) - 1}}} )}}{{\sigma ( {{k_{r ( j ) - 1}}} ) - {t_{0}}}} \\& \quad \le \frac{1}{j} + \frac{{\sigma ( {{k_{r ( j )}}} ) - {t_{0}}}}{{\sigma ( {{k_{r ( j ) - 1}}} ) - {t_{0}}}} - 1 \\& \quad < \frac{1}{j} + \frac{1}{j} = \frac{2}{j}. \end{aligned}$$
Since \(t \to \infty \) implies \(j \to \infty \), we have \(f \in {S_{\mathbb{T}}} ( B )\). Therefore, we find \({S_{\mathbb{T}}} ( B ) \not \subset {S_{\theta - \mathbb{T}}} ( B )\), which is a contradiction. □
Remark 2.2
The function \(f:\mathbb{T} \to \mathbb{R}\) given in the necessity part of Theorem 2.3 is an example of a statistically bounded function which is not lacunary statistically bounded.
Theorem 2.4
Let \(\theta = ( {{k_{r}}} )\) be a lacunary sequence on \(\mathbb{T}\) such that \(\mu ( t ) \le Kt\) for some \(K > 0\) and for all \(t \in \mathbb{T}\). Then we have
$$ {S_{\theta - \mathbb{T}}} ( B ) \subset {S_{\mathbb{T}}} ( B ) \quad \Leftrightarrow \quad \mathop{\lim \sup } _{r \to \infty } \frac{{\sigma ( {{k_{r}}} )}}{{\sigma ( {{k_{r - 1}}} )}} < \infty . $$
Proof
Sufficiency. The sufficiency part of this theorem can be proved using a similar technique to Lemma 3.2 of [30].
Necessity. Conversely, assume that \(\mathop{\lim \sup }_{r \to \infty } \frac{{\sigma ( {{k_{r}}} )}}{{\sigma ( {{k_{r - 1}}} )}} = \infty \). By the hypothesis, we can get
$$\frac{{{k_{r}}}}{{\sigma ( {{k_{r - 1}}} )}} = \frac{{{k_{r}}}}{{\sigma ( {{k_{r}}} )}} \frac{{\sigma ( {{k_{r}}} )}}{{\sigma ( {{k_{r - 1}}} )}} \ge \frac{1}{{ ( {K + 1} )}} \frac{{\sigma ( {{k_{r}}} )}}{{\sigma ( {{k_{r - 1}}} )}}, $$
and so
$$\mathop{\lim \sup }_{r \to \infty } \frac{{{k_{r}}}}{{\sigma ( {{k_{r - 1}}} )}} = \infty . $$
Let us select a subsequence \(( {{k_{r ( j )}}} )\) of \(\theta = ( {{k_{r}}} )\) such that \(\frac{{{k_{r ( j )}}}}{{\sigma ( {{k_{r ( j ) - 1}}} )}} > j\).
Now define Δ-measurable function \(f:\mathbb{T} \to \mathbb{R}\) by
$$f ( s ) = \textstyle\begin{cases} s,\quad s \in { ( {{k_{r ( j ) - 1}},2\sigma ( {{k_{r ( j ) - 1}}} )} )_{\mathbb{T}}} \text{ for }j = 1,2,3, \ldots ; \\ 0, \quad {\text{otherwise}}. \end{cases} $$
Letting
$${\tau _{r}} = \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} \biggl( { \biggl\{ {s \in {{( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > \frac{{{t_{0}}}}{2}} \biggr\} } \biggr). $$
If \(r \ne r ( j )\), then we can easily see that \({\tau _{r}} = 0\). If \(r = r ( j )\), then we get
$$\begin{aligned} {\tau _{r}} =& \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} \biggl( { \biggl\{ {s \in {{( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > \frac{{{t_{0}}}}{2}} \biggr\} } \biggr) \\ =& \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},{k_{r ( j )}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} \biggl( { \biggl\{ {s \in {{ \bigl( {{k_{r ( j ) - 1}},2\sigma ( {{k_{r ( j ) - 1}}} )} \bigr)}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > \frac{{{t_{0}}}}{2}} \biggr\} } \biggr) \\ =& \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},2\sigma ( {{k_{r ( j ) - 1}}} )} )}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},{k_{r ( j )}}} ]}_{\mathbb{T}}}} )}}. \end{aligned}$$
Here, there are two possible cases: \(2\sigma ( {{k_{r ( j ) - 1}}} ) \in \mathbb{T}\) and \(2\sigma ( {{k_{r ( j ) - 1}}} ) \notin \mathbb{T}\). Let us now examine these: If \(2\sigma ( {{k_{r ( j ) - 1}}} ) \in \mathbb{T}\), then we find
$${\mu _{\Delta }} \bigl( {{{ \bigl( {{k_{r ( j ) - 1}},2 \sigma ( {{k_{r ( j ) - 1}}} )} \bigr)}_{\mathbb{T}}}} \bigr) = \sigma ( {{k_{r ( j ) - 1}}} ), $$
and so
$$\begin{aligned} {\tau _{r}} =& \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},2\sigma ( {{k_{r ( j ) - 1}}} )} )}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},{k_{r ( j )}}} ]}_{\mathbb{T}}}} )}} \\ = &\frac{{\sigma ( {{k_{r ( j ) - 1}}} )}}{{\sigma ( {{k_{r ( j )}}} ) - \sigma ( {{k_{r ( j ) - 1}}} )}} \\ \le& \frac{{\sigma ( {{k_{r ( j ) - 1}}} )}}{{{k_{r ( j )}} - \sigma ( {{k_{r ( j ) - 1}}} )}} < \frac{1}{{j - 1}} \to 0 \quad ( {{\text{as }} j \to \infty } ). \end{aligned}$$
If \(2\sigma ( {{k_{r ( j ) - 1}}} ) \notin \mathbb{T}\), then we can write
$${ \bigl( {{k_{r ( j ) - 1}},2\sigma ( {{k_{r ( j ) - 1}}} )} \bigr)_{\mathbb{T}}} = { ( {{k_{r ( j ) - 1}},{\alpha _{j}}} ]_{\mathbb{T}}}, $$
where \({\alpha _{j}}: = \max \{ {s \in \mathbb{T}:s < 2\sigma ( {{k_{r ( j ) - 1}}} )} \} \). Therefore, using the hypothesis, we get
$$\begin{aligned} {\mu _{\Delta }} \bigl( {{{ \bigl( {{k_{r ( j ) - 1}},2 \sigma ( {{k_{r ( j ) - 1}}} )} \bigr)}_{\mathbb{T}}}} \bigr) =& {\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},{\alpha _{j}}} ]}_{\mathbb{T}}}} ) \\ =& \sigma ( {{\alpha _{j}}} ) - \sigma ( {{k_{r ( j ) - 1}}} ) \\ \le& ( {K + 1} ){\alpha _{j}} - \sigma ( {{k_{r ( j ) - 1}}} ) \\ \le& 2 ( {K + 1} )\sigma ( {{k_{r ( j ) - 1}}} ) - \sigma ( {{k_{r ( j ) - 1}}} ) \\ =& ( {2K + 1} )\sigma ( {{k_{r ( j ) - 1}}} ), \end{aligned}$$
and so
$$ {\tau _{r}} = \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},2\sigma ( {{k_{r ( j ) - 1}}} )} )}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},{k_{r ( j )}}} ]}_{\mathbb{T}}}} )}} \le \frac{{ ( {2K + 1} )\sigma ( {{k_{r ( j ) - 1}}} )}}{{\sigma ( {{k_{r ( j )}}} ) - \sigma ( {{k_{r ( j ) - 1}}} )}} < \frac{{2K + 1}}{{j - 1}} \to 0 \quad ( {{\text{as }} j \to \infty } ). $$
Thus, we get that \(f \in {S_{\theta - \mathbb{T}}} ( B )\).
On the other hand, for any real \(M > 0\), there exists some \({j_{0}} \in \mathbb{N}\) such that \({k_{r ( j ) - 1}} > M\) for all \(j \ge {j_{0}}\). Then we have
$$\begin{aligned}& \frac{1}{{{\mu _{\Delta }} ( {{{ [ {{t_{0}},2\sigma ( {{k_{r ( j ) - 1}}} )} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} \bigl( { \bigl\{ {s \in {{ \bigl[ {{t_{0}},2\sigma ( {{k_{r ( j ) - 1}}} )} \bigr]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) \\& \quad \ge \frac{1}{{{\mu _{\Delta }} ( {{{ [ {{t_{0}},2\sigma ( {{k_{r ( j ) - 1}}} )} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} \bigl( { \bigl\{ {s \in {{ \bigl( {{k_{r ( j ) - 1}},2\sigma ( {{k_{r ( j ) - 1}}} )} \bigr)}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > {k_{r ( j ) - 1}}} \bigr\} } \bigr) \\& \quad = \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},2\sigma ( {{k_{r ( j ) - 1}}} )} )}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ [ {{t_{0}},2\sigma ( {{k_{r ( j ) - 1}}} )} ]}_{\mathbb{T}}}} )}} \end{aligned}$$
for all \(j \ge {j_{0}}\). Here, if \(2\sigma ( {{k_{r ( j ) - 1}}} ) \in \mathbb{T}\), then
$$\begin{aligned}& \frac{1}{{{\mu _{\Delta }} ( {{{ [ {{t_{0}},2\sigma ( {{k_{r ( j ) - 1}}} )} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} \bigl( { \bigl\{ {s \in {{ \bigl[ {{t_{0}},2\sigma ( {{k_{r ( j ) - 1}}} )} \bigr]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) \\& \quad = \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},2\sigma ( {{k_{r ( j ) - 1}}} )} )}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ [ {{t_{0}},2\sigma ( {{k_{r ( j ) - 1}}} )} ]}_{\mathbb{T}}}} )}} \\& \quad = \frac{{\sigma ( {{k_{r ( j ) - 1}}} )}}{{\sigma ( {2\sigma ( {{k_{r ( j ) - 1}}} )} ) - {t_{0}}}} \\& \quad \ge \frac{{\sigma ( {{k_{r ( j ) - 1}}} )}}{{2 ( {K + 1} )\sigma ( {{k_{r ( j ) - 1}}} )}} \\& \quad = \frac{1}{{2 ( {K + 1} )}}. \end{aligned}$$
If \(2\sigma ( {{k_{r ( j ) - 1}}} ) \notin \mathbb{T}\), then we can write
$${\mu _{\Delta }} \bigl( {{{ \bigl( {{k_{r ( j ) - 1}},2 \sigma ( {{k_{r ( j ) - 1}}} )} \bigr)}_{\mathbb{T}}}} \bigr) = {\mu _{\Delta }} \bigl( {{{ ( {{k_{r ( j ) - 1}},{\beta _{j}}} )}_{\mathbb{T}}}} \bigr) $$
and
$${\mu _{\Delta }} \bigl( {{{ \bigl[ {{t_{0}},2\sigma ( {{k_{r ( j ) - 1}}} )} \bigr]}_{\mathbb{T}}}} \bigr) = { \mu _{\Delta }} \bigl( {{{ [ {{t_{0}},{\alpha _{j}}} ]}_{\mathbb{T}}}} \bigr), $$
where \({\alpha _{j}}\) is the same as in the above and \({\beta _{j}}: = \min \{ {s \in \mathbb{T}:s > 2\sigma ( {{k_{r ( j ) - 1}}} )} \} \). Hence, if \(2\sigma ( {{k_{r ( j ) - 1}}} ) \notin \mathbb{T}\), then we have
$$\begin{aligned}& \frac{1}{{{\mu _{\Delta }} ( {{{ [ {{t_{0}},2\sigma ( {{k_{r ( j ) - 1}}} )} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} \bigl( { \bigl\{ {s \in {{ \bigl[ {{t_{0}},2\sigma ( {{k_{r ( j ) - 1}}} )} \bigr]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) \\& \quad = \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},2\sigma ( {{k_{r ( j ) - 1}}} )} )}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ [ {{t_{0}},2\sigma ( {{k_{r ( j ) - 1}}} )} ]}_{\mathbb{T}}}} )}} \\& \quad = \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r ( j ) - 1}},{\beta _{j}}} )}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ [ {{t_{0}},{\alpha _{j}}} ]}_{\mathbb{T}}}} )}} \\& \quad = \frac{{{\beta _{j}} - \sigma ( {{k_{r ( j ) - 1}}} )}}{{\sigma ( {{\alpha _{j}}} ) - {t_{0}}}} \\& \quad \ge \frac{{2\sigma ( {{k_{r ( j ) - 1}}} ) - \sigma ( {{k_{r ( j ) - 1}}} )}}{{ ( {K + 1} ){\alpha _{j}}}} \\& \quad \ge \frac{{\sigma ( {{k_{r ( j ) - 1}}} )}}{{2 ( {K + 1} )\sigma ( {{k_{r ( j ) - 1}}} )}} \\& \quad = \frac{1}{{2 ( {K + 1} )}}. \end{aligned}$$
Therefore, we get that \(f \notin {S_{\mathbb{T}}} ( B )\). Consequently, we find that \({S_{\theta - \mathbb{T}}} ( B ) \not \subset {S_{\mathbb{T}}} ( B )\), which is a contradiction. □
Remark 2.3
The function \(f:\mathbb{T} \to \mathbb{R}\) given in the necessity part of Theorem 2.4 is an example of a lacunary statistically bounded function which is not statistically bounded.
Theorem 2.5
Let \(\theta = ( {{k_{r}}} )\) and \(\theta ' = ( {{l_{r}}} )\) be two lacunary sequences on \(\mathbb{T}\) such that \({ ( {{k_{r - 1}},{k_{r}}} ]_{\mathbb{T}}} \subset { ( {{l_{r - 1}},{l_{r}}} ]_{\mathbb{T}}}\) for all \(r \in \mathbb{N}\). Then we have the following:
-
(i)
If \(\mathop{\lim \inf }_{r \to \infty } \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}} > 0\), then \({S_{\theta ' - \mathbb{T}}} ( B ) \subseteq {S_{\theta - \mathbb{T}}} ( B )\).
-
(ii)
If \(\lim_{r \to \infty } \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}} = 1\), then \({S_{\theta - \mathbb{T}}} ( B ) \subseteq {S_{\theta ' - \mathbb{T}}} ( B )\).
Proof
(i) Suppose that \({ ( {{k_{r - 1}},{k_{r}}} ]_{\mathbb{T}}} \subset { ( {{l_{r - 1}},{l_{r}}} ]_{\mathbb{T}}}\) for all \(r \in \mathbb{N}\) and \(\mathop{\lim \inf }_{r \to \infty } \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}} > 0\). For \(M > 0\), we have
$$ \bigl\{ {s \in {{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} \subseteq \bigl\{ {s \in {{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} , $$
and so
$$\begin{aligned}& \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} ( { \bigl\{ {s \in {{ \bigl( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) \\& \quad \le \frac{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}} \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}} \bigl\{ {s \in {{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} \end{aligned}$$
for all \(r \in \mathbb{N}\). Now, taking the limit as \(r \to \infty \), we get \({S_{\theta ' - \mathbb{T}}} ( B ) \subseteq {S_{\theta - \mathbb{T}}} ( B )\).
(ii) Suppose that \({ ( {{k_{r - 1}},{k_{r}}} ]_{\mathbb{T}}} \subset { ( {{l_{r - 1}},{l_{r}}} ]_{\mathbb{T}}}\) for all \(r \in \mathbb{N}\) and \(\lim_{r \to \infty } \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}} = 1\). For \(M > 0\), we may write
$$\begin{aligned}& \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} ( { \bigl\{ {s \in {{ \bigl( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) \\& \quad = \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} ( { \bigl\{ {s \in {{ \bigl( {{l_{r - 1}},{k_{r - 1}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) \\& \qquad {}+ \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} ( { \bigl\{ {s \in {{ \bigl( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) \\& \qquad {}+ \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}} { \mu _{\Delta }} ( { \bigl\{ {s \in {{ \bigl( {{k_{r}},{l_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) \\& \quad \le \frac{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{k_{r - 1}}} ]}_{\mathbb{T}}}} )}}{ {{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}} \\& \qquad {} + \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} ( { \bigl\{ {s \in {{ \bigl( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) + \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r}},{l_{r}}} ]}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}} \\& \quad = \frac{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} ) - {\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}} + \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} ( { \bigl\{ {s \in {{ \bigl( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) \\& \quad \le \biggl( {1 - \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}}} \biggr) + \frac{1}{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}}{ \mu _{\Delta }} ( { \bigl\{ {s \in {{ \bigl( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}: \bigl\vert {f ( s )} \bigr\vert > M} \bigr\} } \bigr) \end{aligned}$$
for all \(r \in \mathbb{N}\). Since \(\lim_{r \to \infty } \frac{{{\mu _{\Delta }} ( {{{ ( {{k_{r - 1}},{k_{r}}} ]}_{\mathbb{T}}}} )}}{{{\mu _{\Delta }} ( {{{ ( {{l_{r - 1}},{l_{r}}} ]}_{\mathbb{T}}}} )}} = 1\), if \(f \in {S_{\theta - \mathbb{T}}} ( B )\), then we get \(f \in {S_{\theta ' - \mathbb{T}}} ( B )\). Thus, this implies that \({S_{\theta - \mathbb{T}}} ( B ) \subseteq {S_{\theta ' - \mathbb{T}}} ( B )\). □