Let us define the regularized solution by the Fourier truncation method as
$$\begin{aligned} \textstyle\begin{cases} u^{N, \delta }(x,t)\\ \quad = \sum_{n=1}^{N(\delta )} \exp ( \lambda _{n} \int _{t}^{T} \mathcal{L} ( \Vert \nabla u^{N, \delta }(\cdot,s) \Vert _{L^{2}}, \Vert \nabla v^{N, \delta }(\cdot,s) \Vert _{L^{2}} ) \,ds ) \langle f^{\delta }, e_{n} \rangle e_{n}(x) , \\ v^{N, \delta }(x,t)\\ \quad = \sum_{n=1}^{N(\delta )} \exp ( \lambda _{n} \int _{t}^{T} \mathcal{L} ( \Vert \nabla u^{N, \delta }(\cdot,s) \Vert _{L^{2}}, \Vert \nabla v^{N, \delta }(\cdot,s) \Vert _{L^{2}} ) \,ds ) \langle g^{\delta }, e_{n} \rangle e_{n}(x), \end{cases}\displaystyle \end{aligned}$$
(4.1)
where \(N:=N(\delta )\) is a regularization parameter. Here the function \((f^{\delta }, g^{\delta }) \in L^{2}(\Omega ) \times L^{2}(\Omega )\) satisfies
$$ \bigl\Vert f^{\delta }-f \bigr\Vert _{L^{2}(\Omega )}+ \bigl\Vert g^{\delta }-f \bigr\Vert _{L^{2}(\Omega )} \le \delta . $$
(4.2)
Theorem 4.1
Let \(f \in L^{2}(\Omega )\) be such that
$$ \sum_{n=1}^{\infty } \langle f, e_{n} \rangle ^{2} \lambda _{n}^{1+\delta } e^{2 M_{1} T\lambda _{n}} \le E $$
for some constants \(E>0\) and \(\delta >0\). Let us choose \(N:=N(\delta )\) such that
$$\begin{aligned} \lim_{\delta \to 0} N(\delta ) = +\infty ,\qquad \lim _{ \delta \to 0} \delta ^{2} \lambda _{N(\delta )} e^{2T M_{1} \lambda _{N( \delta )} }=0. \end{aligned}$$
Then we have the estimate
$$\begin{aligned} & \bigl\Vert u^{N, \delta }(\cdot,t)- u(\cdot,t) \bigr\Vert ^{2}_{H^{1}(\Omega )}+ \bigl\Vert v^{N, \delta }(\cdot,t)- v( \cdot,t) \bigr\Vert ^{2}_{H^{1}(\Omega )} \\ &\quad \le \bigl( 6 \lambda _{N(\delta )} \exp (2 \mathcal{M}_{1} T \lambda _{N(\delta )} ) \delta ^{2} + 6 E \bigl(N(\delta ) \bigr)^{-\gamma } \bigr) \exp \bigl( 6 K_{l} \lambda _{1}^{-\gamma } E C (T-t) \bigr). \end{aligned}$$
(4.3)
Remark 4.1
It is obvious that \(\lambda _{N} \sim N^{\frac{2}{d}}\). So we can choose a natural number N such that
$$ \frac{ 1-\nu }{ 2T M_{1} } \ln \biggl( \frac{1}{\delta } \biggr) \le \lambda _{N} \le \frac{ 1-\nu }{ M B_{1} } \ln \biggl( \frac{1}{\delta } \biggr), \quad 0< \nu < 1. $$
Then the error \(\| u^{N, \delta }(\cdot,t)- u(\cdot,t) \|^{2}_{H^{1}(\Omega )}+ \| v^{N, \delta }(\cdot,t)- v(\cdot,t) \|^{2}_{H^{1}(\Omega )} \) is of logarithmic order
$$ \max \biggl( \biggl[\ln \biggl(\frac{1}{\delta }\biggr) \biggr]^{-2}, \delta ^{2\nu } \ln \biggl( \frac{1}{\delta }\biggr) \biggr). $$
Proof
To show the existence of a mild solution, we define the operator \(\mathbf{R}_{\delta}^{m} (u,v) (t)= ( \mathcal{R}_{1,\delta} (u, v)(t), \mathcal{R}_{2,\delta} (u, v)(t) ) \) and show that \(\mathbf{R}_{\delta}^{m} \) has a fixed point in the space \(( L^{\infty }_{\theta }(0,T; { H}^{1}(\Omega ) ) )^{2}\). Here the operators \(\mathcal{R}_{1,\delta}\) and \(\mathcal{R}_{2,\delta}\) are defined as follows:
$$\begin{aligned} \textstyle\begin{cases} \mathcal{R}_{1, \delta } (u,v) (t)\\ \quad = \sum_{n=1}^{N(\delta )} \exp ( \lambda _{n} \int _{t}^{T} \mathcal{L} ( \Vert \nabla u^{N, \delta }(\cdot,s) \Vert _{L^{2}}, \Vert \nabla v^{N, \delta }(\cdot,s) \Vert _{L^{2}} ) \,ds ) \langle f^{\delta }, e_{n} \rangle e_{n}(x) , \\ \mathcal{R}_{2, \delta } (u,v) (t)\\ \quad = \sum_{n=1}^{N(\delta )} \exp ( \lambda _{n} \int _{t}^{T} \mathcal{L} ( \Vert \nabla u^{N, \delta }(\cdot,s) \Vert _{L^{2}}, \Vert \nabla v^{N, \delta }(\cdot,s) \Vert _{L^{2}} ) \,ds ) \langle g^{\delta }, e_{n} \rangle e_{n}(x). \end{cases}\displaystyle \end{aligned}$$
(4.4)
We will prove by induction that if \((u_{1}, v_{1}) \in ( L^{\infty }(0,T; { H}^{1}(\Omega ) ) )^{2} \) and \((u_{2}, v_{2}) \in ( L^{\infty }(0,T; { H}^{1}(\Omega ) ) )^{2} \), then
$$\begin{aligned} \bigl\Vert {\mathbf{R}}_{\delta }^{m}(u_{1}, v_{1}) (\cdot ,t)- \mathbf{R}_{\delta }^{m} (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}(\Omega )} \le \frac{ ( 2 \mathcal{D} (\delta , f, g) )^{m}(T-t)^{m} }{m!} . \end{aligned}$$
(4.5)
For \(m=1\), using the inequality \((c+d)^{2} \le 2 c^{2}+ 2d^{2}\), we get that
$$\begin{aligned} & \bigl\Vert {\mathbf{R}}_{\delta }^{m}(u_{1}, v_{1}) (\cdot ,t)- \mathbf{R}_{\delta }^{m} (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}(\Omega )} \\ &\quad \le 2 \bigl\Vert \mathcal{R}_{1, \delta }^{m}(u_{1}, v_{1}) (\cdot ,t)- \mathcal{R}_{1, \delta } (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}( \Omega )} \\ &\qquad {}+ 2 \bigl\Vert \mathcal{R}_{2, \delta }^{m}(u_{1}, v_{1}) (\cdot ,t)- \mathcal{R}_{2, \delta }^{m} (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}( \Omega )}. \end{aligned}$$
(4.6)
By applying Lemma 2.1 and the inequality \(|e^{r} - e^{q} | \le |r-q| \max ( e^{r}, e^{q})\) for \(r, q \in \mathbb{R}\), we have
$$\begin{aligned} & \bigl\Vert \mathcal{R}_{1, \delta }^{m}(u_{1}, v_{1}) (\cdot ,t)- \mathcal{R}_{1, \delta }^{m} (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}( \Omega )} \\ &\quad = \sum_{n=1}^{N(\delta )} \lambda _{n} \biggl[\exp \biggl( \lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u_{1}(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v_{1}(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) \\ &\qquad{} - \exp \biggl( \lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u_{2}(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v_{2}(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) \biggr]^{2} \bigl\langle f^{\delta }, e_{n} \bigr\rangle ^{2} \\ &\quad \le \sum_{n=1}^{N(\delta )} \lambda _{n}^{3} e^{2(T-t) \mathcal{M}_{1} \lambda _{n} } \biggl[ \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u_{1}(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v_{1}(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \\ &\qquad {}- \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u_{2}(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v_{2}(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr]^{2} \bigl\langle f^{\delta }, e_{n} \bigr\rangle ^{2} \\ &\quad \le \bigl\vert N(\delta ) \bigr\vert ^{3} e^{2T M_{1}N(\delta ) } K_{l}^{2} \bigl\Vert f^{\delta } \bigr\Vert ^{2}_{L^{2}( \Omega )} \\ &\qquad {}\times \biggl( \int _{t}^{T} \bigl\Vert \nabla (u_{1}-u_{2}) (\cdot ,s) \bigr\Vert _{L^{2}( \Omega )}\,ds + \int _{t}^{T} \bigl\Vert \nabla (v_{1}-v_{2}) (\cdot ,s) \bigr\Vert _{L^{2}( \Omega )}\,ds \biggr)^{2} \\ &\quad \le C \bigl\vert N(\delta ) \bigr\vert ^{3} e^{2T M_{1}N(\delta ) } K_{l}^{2} \bigl\Vert f^{\delta } \bigr\Vert ^{2}_{L^{2}(\Omega )} \int _{t}^{T} \bigl\Vert (u_{1}, v_{1}) (\cdot ,s)- (u_{2}, v_{2}) (\cdot ,s) \bigr\Vert ^{2}_{H^{1}(\Omega )}\,ds, \end{aligned}$$
(4.7)
where in the last line, we used the inequality \(\|\nabla \psi \|_{L^{2}(\Omega )} \le C \|\psi \|_{H^{1}(\Omega )}\). By a similar argument we obtain that
$$\begin{aligned} & \bigl\Vert \mathcal{R}_{2, \delta }^{m}(u_{1}, v_{1}) (\cdot ,t)- \mathcal{R}_{2, \delta } (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}( \Omega )} \\ &\quad \le C \bigl\vert N(\delta ) \bigr\vert ^{3} e^{2T M_{1}N(\delta ) } K_{l}^{2} \bigl\Vert g^{\delta } \bigr\Vert ^{2}_{L^{2}(\Omega )} \int _{t}^{T} \bigl\Vert (u_{1}, v_{1}) (\cdot ,s)- (u_{2}, v_{2}) (\cdot ,s) \bigr\Vert ^{2}_{H^{1}(\Omega )}\,ds. \end{aligned}$$
(4.8)
Combining (4.6), (4.7), and (4.8), we find that
$$\begin{aligned} & \bigl\Vert {\mathbf{R}}_{\delta }(u_{1}, v_{1}) (\cdot ,t)- \mathbf{R}_{\delta } (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}(\Omega )} \\ &\quad \le \mathcal{D} (\delta , f, g) \int _{t}^{T} \bigl\Vert (u_{1}, v_{1}) ( \cdot ,s)- (u_{2}, v_{2}) (\cdot ,s) \bigr\Vert ^{2}_{H^{1}(\Omega )}\,ds \\ &\quad \le \mathcal{D} (\delta , f, g) (T-t) \bigl\Vert (u_{1}, v_{1})- (u_{2}, v_{2}) \bigr\Vert _{ ( L^{\infty }(0,T; { H}^{1}(\Omega ) ) )^{2}}, \end{aligned}$$
(4.9)
where
$$ \mathcal{D} (\delta , f, g)= 2C \bigl\vert N(\delta ) \bigr\vert ^{3} e^{2T M_{1}N(\delta ) } K_{l}^{2} \bigl( \bigl\Vert f^{\delta } \bigr\Vert ^{2}_{L^{2}(\Omega )} + \bigl\Vert g^{\delta } \bigr\Vert ^{2}_{L^{2}( \Omega )} \bigr) . $$
This implies (4.5). Assume that (4.5) holds for \(m=j\). We will check that (4.5) holds for \(m=j+1\). Indeed, by similar arguments as before, we also get the following two bounds:
$$\begin{aligned} & \bigl\Vert \mathcal{R}_{1, \delta }^{j+1}(u_{1}, v_{1}) (\cdot ,t)- \mathcal{R}_{1, \delta }^{j+1} (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}( \Omega )} \\ &\quad = \bigl\Vert \mathcal{R}_{1, \delta } \bigl( \mathcal{R}_{1, \delta }^{j} (u_{1}, v_{1}) (\cdot ,t) \bigr) - \mathcal{R}_{1, \delta } \bigl( \mathcal{R}_{1, \delta }^{j} (u_{2}, v_{2}) (\cdot ,t) \bigr) \bigr\Vert ^{2}_{H^{1}( \Omega )} \\ &\quad \le C \bigl\vert N(\delta ) \bigr\vert ^{3} e^{2T M_{1}N(\delta ) } K_{l}^{2} \bigl\Vert f^{\delta } \bigr\Vert ^{2}_{L^{2}(\Omega )} \int _{t}^{T} \bigl\Vert \mathcal{R}_{1, \delta }^{j}(u_{1}, v_{1}) (\cdot ,s)- \mathcal{R}_{1, \delta }^{j+1} (u_{2}, v_{2}) (\cdot ,s) \bigr\Vert ^{2}_{H^{1}(\Omega )} \,ds \end{aligned}$$
and
$$\begin{aligned} & \bigl\Vert \mathcal{R}_{2, \delta }^{j+1}(u_{1}, v_{1}) (\cdot ,t)- \mathcal{R}_{2, \delta }^{j+1} (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}( \Omega )} \\ &\quad = \bigl\Vert \mathcal{R}_{2, \delta } \bigl( \mathcal{R}_{2, \delta }^{j} (u_{1}, v_{1}) (\cdot ,t) \bigr) - \mathcal{R}_{2, \delta } \bigl( \mathcal{R}_{2, \delta }^{j} (u_{2}, v_{2}) (\cdot ,t) \bigr) \bigr\Vert ^{2}_{H^{1}( \Omega )} \\ & \quad \le C \bigl\vert N(\delta ) \bigr\vert ^{3} e^{2T M_{1}N(\delta ) } K_{l}^{2} \bigl\Vert g^{\delta } \bigr\Vert ^{2}_{L^{2}(\Omega )} \int _{t}^{T} \bigl\Vert \mathcal{R}_{2, \delta }^{j}(u_{1}, v_{1}) (\cdot ,s)- \mathcal{R}_{2, \delta }^{j+1} (u_{2}, v_{2}) (\cdot ,s) \bigr\Vert ^{2}_{H^{1}(\Omega )} \,ds. \end{aligned}$$
From two above observation we find that
$$\begin{aligned} & \bigl\Vert {\mathbf{R}}_{\delta }^{j+1}(u_{1}, v_{1}) (\cdot ,t)- \mathbf{R}_{ \delta }^{j+1} (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}(\Omega )} \\ &\quad \le 2 \bigl\Vert \mathcal{R}_{1, \delta }^{j+1}(u_{1}, v_{1}) (\cdot ,t)- \mathcal{R}_{1, \delta }^{j+1} (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}( \Omega )} \\ &\qquad {}+ 2 \bigl\Vert \mathcal{R}_{2, \delta }^{j+1}(u_{1}, v_{1}) (\cdot ,t)- \mathcal{R}_{2, \delta }^{j+1} (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}( \Omega )} \\ &\quad \le 2 \mathcal{D} (\delta , f, g) \int _{t}^{T} \bigl\Vert { \mathbf{R}}_{ \delta }^{j+1}(u_{1}, v_{1}) (\cdot ,s)- \mathbf{R}_{\delta }^{j+1} (u_{2}, v_{2}) ( \cdot ,s) \bigr\Vert ^{2}_{H^{1}(\Omega )} \,ds. \end{aligned}$$
(4.10)
Using the induction assumption of (3.10), from (3.15) it follows that
$$\begin{aligned} & \bigl\Vert {\mathbf{R}}_{\delta }^{j+1}(u_{1}, v_{1}) (\cdot ,t)- \mathbf{R}_{ \delta }^{j+1} (u_{2}, v_{2}) (\cdot ,t) \bigr\Vert ^{2}_{H^{1}(\Omega )} \\ &\quad \le \bigl( 2 \mathcal{D} (\delta , f, g) \bigr)^{j+1} \bigl\Vert (u_{1}, v_{1})- (u_{2}, v_{2}) \bigr\Vert ^{2}_{ ( L^{\infty }(0,T; { H}^{1}(\Omega ) ) )^{2}} \int _{t}^{T} \frac{(T-s)^{j} }{j!} \,ds \\ &\quad = \frac{(T-t)^{j+1} }{( j+1)!} \bigl( 2 \mathcal{D} (\delta , f, g) \bigr)^{j+1} \bigl\Vert (u_{1}, v_{1})- (u_{2}, v_{2}) \bigr\Vert ^{2}_{ ( L^{\infty }(0,T; { H}^{1}(\Omega ) ) )^{2}}. \end{aligned}$$
(4.11)
Hence, (3.10) holds for any positive integer m. As a consequence, we conclude that (4.5) holds for any \(m \in \mathbb{N}\). Since
$$ \lim_{j \to +\infty }\frac{T^{j+1} }{( j+1)!} \bigl( 2 \mathcal{D} ( \delta , f, g) \bigr)^{j+1}=0, $$
there exists a positive constant \(j_{0}\) such that
$$ \frac{T^{j+1} }{( j+1)!} \bigl( 2 \mathcal{D} (\delta , f, g) \bigr)^{j+1} < 1. $$
Using the Banach fixed point theorem (see [31–33]), we conclude that \(\mathbf{R}_{\delta }^{j_{0}}\) has a fixed point \((u^{+}, v^{+})\) on the space \(( L^{\infty }(0,T; { H}^{1}(\Omega ) ) )^{2}\). It is easy to get that \((u^{*}, v^{*})\) is also a solution of the nonlinear equation
$$ \mathbf{R}_{\delta }^{j_{0}} \bigl(u^{+}, v^{+}\bigr)= \bigl(u^{+}, v^{+}\bigr). $$
From (3.6) and (4.1) we find that
$$\begin{aligned} &u^{N, \delta }(x,t)- u(x,t) \\ &\quad = \sum_{n=1}^{N(\delta )} \exp \biggl( \lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) \bigl\langle f^{\delta }, e_{n} \bigr\rangle e_{n}(x) \\ &\qquad {}- \sum_{n=1}^{\infty }\exp \biggl( \lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) \langle f, e_{n} \rangle e_{n}(x). \end{aligned}$$
(4.12)
By a simple calculation we find that
$$\begin{aligned} &u^{N, \delta }(x,t)- u(x,t) \\ &\quad = \sum_{n=1}^{N(\delta )} \exp \biggl( \lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) \bigl\langle f^{\delta }-f, e_{n} \bigr\rangle e_{n}(x) \\ &\qquad {}+ \sum_{n=1}^{N(\delta )} \langle f, e_{n} \rangle e_{n}(x) \biggl[ \exp \biggl( \lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) \\ & \qquad{} - \exp \biggl( \lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) \biggr] \\ &\qquad {}+ \sum_{n> N(\delta )}^{\infty }\exp \biggl( \lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) \langle f, e_{n} \rangle e_{n}(x) \\ &\quad = \text{Error}_{1}+ \text{Error}_{2}+ \text{Error}_{3}. \end{aligned}$$
(4.13)
First of all, let us look at the first term. Using Parseval’s equality and noting that \(\mathcal{L}( z_{1}, z_{2}) \le \mathcal{M}_{1}\) for all \((z_{1}, z_{2}) \in \mathbb{R}^{2}\), Error1 is bounded by
$$\begin{aligned} \Vert \text{Error}_{1} \Vert _{H^{1}(\Omega )}^{2}&=\sum_{n=1}^{N(\delta )} \lambda _{n} \exp \biggl( 2 \lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) \bigl\langle f^{\delta }-f, e_{n} \bigr\rangle ^{2} \\ &\le \sum_{n=1}^{N(\delta )} \lambda _{N(\delta )} \exp (2 \mathcal{M}_{1} T \lambda _{N(\delta )} ) \sum_{n=1}^{N(\delta )} \bigl\langle f^{\delta }-f, e_{n} \bigr\rangle ^{2} \\ &\le \lambda _{N(\delta )} \exp (2 \mathcal{M}_{1} T \lambda _{N( \delta )} ) \bigl\Vert f^{\delta }- f \bigr\Vert ^{2}\le \lambda _{N(\delta )} \exp (2 \mathcal{M}_{1} T \lambda _{N(\delta )} ) \delta ^{2}, \end{aligned}$$
(4.14)
which allows us to derive that
$$\begin{aligned} \Vert \text{Error}_{1} \Vert _{H^{1}(\Omega )} \le \sqrt{ \lambda _{N(\delta )} } \exp ( \mathcal{M}_{1} T \lambda _{N(\delta )} ) \delta . \end{aligned}$$
(4.15)
Next, we treat Error2. Using Parseval’s equality, by the inequality \(| e^{c}- e^{d}| \le {|c-d|} \max (e^{c}, e^{d}) \), we get
$$\begin{aligned} \Vert \text{Error}_{2} \Vert _{H^{1}(\Omega )}^{2} \le &\sum_{n=1}^{N(\delta )} \langle f, e_{n} \rangle ^{2} \lambda _{n} e^{2 M_{1} T\lambda _{n}} \\ & {}\times \biggl( \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \\ & {}- \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr)^{2} \\ \le& \biggl( \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \\ & {} - \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr)^{2} E, \end{aligned}$$
(4.16)
where we used that
$$\begin{aligned}& \begin{gathered} \sum_{n=1}^{N(\delta )} \langle f, e_{n} \rangle ^{2} \lambda _{n} e^{2 M_{1} T\lambda _{n}} \le \sum_{n=1}^{\infty } \langle f, e_{n} \rangle ^{2} \lambda _{n} e^{2 M_{1} T\lambda _{n}} \le \lambda _{1}^{-\gamma } E, \\ \begin{aligned} \exp \biggl( 2 \lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) &\le \exp \biggl( 2 \lambda _{n} \int _{t}^{T} M_{1} \,ds \biggr) \\ &\le e^{2 M_{1} T\lambda _{n}}, \end{aligned} \end{gathered} \end{aligned}$$
(4.17)
and
$$\begin{aligned} \exp \biggl( \lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) ) &\le \exp \biggl( 2 \lambda _{n} \int _{t}^{T} M_{1} \,ds \biggr) \\ &\le e^{2 M_{1} T\lambda _{n}}. \end{aligned}$$
(4.18)
Using Lemma (2.1), we get that
$$\begin{aligned} & \biggl\vert \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds - \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr\vert \\ &\quad \le K_{l} \int _{t}^{T} \bigl( \bigl\Vert \nabla u^{N, \delta }(\cdot,s)-\nabla u(\cdot,s) \bigr\Vert _{L^{2}} + \bigl\Vert \nabla v^{N, \delta }(\cdot,s)-\nabla v(\cdot,s) \bigr\Vert _{L^{2}} \bigr), \end{aligned}$$
(4.19)
and from the inequality \((c+d)^{2} \le 2 c^{2} + 2 d^{2}\), \(c, d \ge 0\), it follows that
$$\begin{aligned} & \biggl( \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v^{N, \delta }(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds - \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr)^{2} \\ & \quad \le 2K_{l} \biggl( \int _{t}^{T} \bigl\Vert \nabla u^{N, \delta }(\cdot,s)- \nabla u(\cdot,s) \bigr\Vert _{L^{2}} \,ds+ \int _{t}^{T} \bigl\Vert \nabla v^{N, \delta }(\cdot,s)- \nabla v(\cdot,s) \bigr\Vert _{L^{2}} \,ds \biggr). \end{aligned}$$
(4.20)
Combining (4.16) and (4.20), we arrive at
$$\begin{aligned} \Vert \text{Error}_{2} \Vert _{H^{1}(\Omega )}^{2} \le& 2K_{l} \lambda _{1}^{- \gamma } E \biggl( \int _{t}^{T} \bigl\Vert \nabla u^{N, \delta }(\cdot,s)-\nabla u(\cdot,s) \bigr\Vert _{L^{2}} \,ds \\ &{}+ \int _{t}^{T} \bigl\Vert \nabla v^{N, \delta }(\cdot,s)-\nabla v(\cdot,s) \bigr\Vert _{L^{2}} \,ds \biggr). \end{aligned}$$
(4.21)
The term Error3 is bounded by
$$\begin{aligned} &\Vert \text{Error}_{3} \Vert _{H^{1}(\Omega )}^{2} \\ &\quad = \sum_{n> N(\delta )}^{\infty } \lambda _{n} \exp \biggl( 2\lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) \langle f, e_{n} \rangle ^{2} \\ &\quad \le \bigl(N(\delta )\bigr)^{-\gamma } \sum_{n> N(\delta )}^{\infty } \lambda _{n}^{1+ \gamma } \exp \biggl( 2\lambda _{n} \int _{t}^{T} \mathcal{L} \bigl( \bigl\Vert \nabla u(\cdot,s) \bigr\Vert _{L^{2}}, \bigl\Vert \nabla v(\cdot,s) \bigr\Vert _{L^{2}} \bigr) \,ds \biggr) \langle f, e_{n} \rangle ^{2} \\ &\quad \le E \bigl(N(\delta )\bigr)^{-\gamma }. \end{aligned}$$
(4.22)
Combining (4.14), (4.21), and (4.22), we find that
$$\begin{aligned} & \bigl\Vert u^{N, \delta }(\cdot,t)- u(\cdot,t) \bigr\Vert ^{2}_{H^{1}(\Omega )} \\ &\quad \le 3 \Vert \text{Error}_{1} \Vert ^{2}_{H^{1}(\Omega )}+ 3 \Vert \text{Error}_{2} \Vert ^{2}_{H^{1}(\Omega )}+ 3 \Vert \text{Error}_{3} \Vert ^{2}_{H^{1}(\Omega )} \\ &\quad \le 3 \lambda _{N(\delta )} \exp (2 \mathcal{M}_{1} T \lambda _{N(\delta )} ) \delta ^{2} + 3 E \bigl(N(\delta ) \bigr)^{-\gamma } \\ &\qquad {}+ 6 K_{l} \lambda _{1}^{-\gamma } E \biggl( \int _{t}^{T} \bigl\Vert \nabla u^{N, \delta }(\cdot,s)-\nabla u(\cdot,s) \bigr\Vert _{L^{2}} \,ds \\ &\qquad {}+ \int _{t}^{T} \bigl\Vert \nabla v^{N, \delta }(\cdot,s)-\nabla v(\cdot,s) \bigr\Vert _{L^{2}} \,ds \biggr). \end{aligned}$$
(4.23)
By a similar argument we also get that
$$\begin{aligned} & \bigl\Vert v^{N, \delta }(\cdot,t)- v(\cdot,t) \bigr\Vert ^{2}_{H^{1}(\Omega )} \\ &\quad \le 3 \lambda _{N(\delta )} \exp (2 \mathcal{M}_{1} T \lambda _{N( \delta )} ) \delta ^{2} + 3 E \bigl(N(\delta ) \bigr)^{-\gamma } \\ &\qquad {}+ 6 K_{l} \lambda _{1}^{-\gamma } E \biggl( \int _{t}^{T} \bigl\Vert \nabla u^{N, \delta }(\cdot,s)-\nabla u(\cdot,s) \bigr\Vert _{L^{2}} \,ds \\ &\qquad {}+ \int _{t}^{T} \bigl\Vert \nabla v^{N, \delta }(\cdot,s)-\nabla v(\cdot,s) \bigr\Vert _{L^{2}} \,ds \biggr). \end{aligned}$$
(4.24)
By the previous to equations, recalling that \(\|\nabla \psi \|_{L^{2}(\Omega )} \le C \|\psi \|_{H^{1}(\Omega )}\), we obtain the estimate
$$\begin{aligned} & \bigl\Vert u^{N, \delta }(\cdot,t)- u(\cdot,t) \bigr\Vert ^{2}_{H^{1}(\Omega )}+ \bigl\Vert v^{N, \delta }(\cdot,t)- v( \cdot,t) \bigr\Vert ^{2}_{H^{1}(\Omega )} \\ &\quad \le 6 \lambda _{N(\delta )} \exp (2 \mathcal{M}_{1} T \lambda _{N(\delta )} ) \delta ^{2} + 6 E \bigl(N( \delta ) \bigr)^{-\gamma } \\ &\qquad + 6 K_{l} \lambda _{1}^{-\gamma } E C \int _{t}^{T} \bigl( \bigl\Vert u^{N, \delta }(\cdot,s)- u(\cdot,s) \bigr\Vert ^{2}_{H^{1}(\Omega )}+ \bigl\Vert v^{N, \delta }(\cdot,s)- v(\cdot,s) \bigr\Vert ^{2}_{H^{1}(\Omega )} \bigr) \,ds. \end{aligned}$$
(4.25)
By applying Grönwall’s inequality we deduce that
$$\begin{aligned} & \bigl\Vert u^{N, \delta }(\cdot,t)- u(\cdot,t) \bigr\Vert ^{2}_{H^{1}(\Omega )}+ \bigl\Vert v^{N, \delta }(\cdot,t)- v( \cdot,t) \bigr\Vert ^{2}_{H^{1}(\Omega )} \\ &\quad \le \bigl( 6 \lambda _{N(\delta )} \exp (2 \mathcal{M}_{1} T \lambda _{N(\delta )} ) \delta ^{2} + 6 E \bigl(N(\delta ) \bigr)^{-\gamma } \bigr) \exp \bigl( 6 K_{l} \lambda _{1}^{-\gamma } E C (T-t) \bigr). \end{aligned}$$
(4.26)
□