Single-valued system (1.1)–(1.3)
Let \(X=\{x(t)|x(t)\in C([0,T], {\mathbb{R}})\}\) be the Banach space endowed with the norm \(\|x\|=\sup \{|x(t)|, t\in [0,T]\}\). Also let the product space \((X\times X, \|(x,y)\|)\) be the Banach space equipped with norm \(\|(x,y)\|=\|x\|+\|y\|\).
We define an operator \({\mathcal{H}}: X\times X\to X\times X\) by
$$ {\mathcal{H}}(x,y) (t)= \begin{pmatrix} {\mathcal{H}}_{1}(x,y)(t) \\ {\mathcal{H}}_{2}(x,y)(t) \end{pmatrix}, $$
(3.1)
where
$$ {\mathcal{H}}_{1}(x,y) (t)= I^{\alpha }\widehat{f}(t)+ \frac{\lambda }{ \varLambda } \biggl[- T^{\beta -1} I^{\beta -p} \widehat{g}( \eta )+ \frac{ \varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl(\gamma I ^{q+\alpha }\widehat{f}(\xi )-I^{\beta }\widehat{g}(T) \bigr) \biggr] $$
and
$$ {\mathcal{H}}_{2}(x,y) (t)= I^{\beta }\widehat{g}(t)+ \frac{t^{\beta -1}}{ \varLambda } \biggl[I^{\beta }\widehat{g}(T)-\gamma I^{q+\alpha } \widehat{f}(\xi )-\lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{ \beta -p} \widehat{g}(\eta ) \biggr], $$
and \(\widehat{f}(t)=f(t,x(t), y(t))\), \(\widehat{g}(t)=g(t, x(t), y(t))\). For convenience, we set the notations:
$$\begin{aligned}& M_{1} = \frac{T^{\alpha }}{\varGamma (1+\alpha )}+\frac{1}{ \vert \varLambda \vert } \vert \lambda \vert \vert \gamma \vert \frac{\varGamma (\beta )}{\varGamma (\beta -p)}\frac{ \eta ^{\beta -p-1}\xi ^{q+\alpha }}{\varGamma (q+\alpha +1)}, \end{aligned}$$
(3.2)
$$\begin{aligned}& M_{2} = \frac{T^{\beta -1}\eta ^{\beta -p-1} \vert \lambda \vert }{ \vert \varLambda \vert } \biggl[\frac{T\varGamma (\beta )}{\varGamma (\beta -p)\varGamma (\beta +1)}+ \frac{ \eta }{\varGamma (1+\beta )} \biggr], \end{aligned}$$
(3.3)
$$\begin{aligned}& M_{3} = \frac{T^{\beta -1} \vert \gamma \vert \xi ^{q+\alpha }}{ \vert \varLambda \vert \varGamma (q+\alpha +1)}, \end{aligned}$$
(3.4)
$$\begin{aligned}& M_{4} = \frac{T^{\beta }}{\varGamma (1+\beta )} \biggl(1+\frac{T^{\beta -1}}{ \vert \varLambda \vert } \biggr)+\frac{T^{\beta -1}}{ \vert \varLambda \vert } \vert \lambda \vert \vert \gamma \vert \frac{ \xi ^{q}\eta ^{\beta -p}}{\varGamma (1+q)\varGamma (\beta -p+1)}. \end{aligned}$$
(3.5)
Our first existence result is based on the Leray–Schauder alternative [37, p. 4].
Theorem 3.1
Assume that:
- (\(A_{1}\)):
\(f,g:[0,T]\times \mathbb{R}\times \mathbb{R}\rightarrow \mathbb{R}\)are continuous functions and that there exist real constants\(k_{i},\gamma _{i}\geq 0\) (\(i=0,1,2\)) with\(k_{0}>0\), \(\gamma _{0}>0 \)such that, \(\forall x_{i}\in \mathbb{R}\) (\(i=1,2\)),
$$\begin{aligned}& \bigl\vert f(t,x_{1},x_{2}) \bigr\vert \leq k_{0} + k_{1} \vert x_{1} \vert +k_{2} \vert x_{2} \vert , \\& \bigl\vert g(t,x_{1},x_{2}) \bigr\vert \leq \gamma _{0}+\gamma _{1} \vert x_{1} \vert + \gamma _{2} \vert x_{2} \vert . \end{aligned}$$
If
$$ (M_{1}+M_{3})k_{1}+(M_{2}+M_{4}) \gamma _{1}< 1 \quad \textit{and}\quad (M_{1}+M_{3})k_{2}+(M_{2}+M_{4}) \gamma _{2}< 1, $$
(3.6)
where\(M_{i}\), \(i=1,2,3,4\), are given by (3.2)–(3.5), then system (1.1)–(1.3) has at least one solution on\([0, T]\).
Proof
Firstly we show that the operator \({\mathcal{H}}:X \times X\to X\times X\) defined by (3.1) is completely continuous. Notice that continuity of the operator \({\mathcal{H}}\) follows from that of the functions f and g.
Let \(\varOmega \subset X\times X\) be bounded. Then there exist positive constants \(L_{1}\) and \(L_{2}\) such that \(|f(t, x(t), y(t))|\le L_{1}\), \(|g(t, x(t), y(t))|\le L_{2}\), \(\forall (x,y)\in \varOmega \). Then, for any \((x,y)\in \varOmega \), we have
$$\begin{aligned} \bigl\vert {\mathcal{H}}_{1}(x, y) (t) \bigr\vert \le & \frac{T^{\alpha }}{\varGamma (1+ \alpha )}L_{1}+\frac{ \vert \lambda \vert }{ \vert \varLambda \vert } \biggl[T^{\beta -1} \frac{ \eta ^{\beta -p}}{\varGamma (\beta -p+1)}L_{2} \\ &{}+ \vert \lambda \vert \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \biggl( \frac{T^{\beta }}{\varGamma (1+\beta )}L_{2}+ \vert \gamma \vert \frac{ \xi ^{q+\alpha }}{\varGamma (q+\alpha +1)}L_{1} \biggr) \biggr] \\ =& M_{1}L_{1}+M_{2}L_{2}, \end{aligned}$$
which implies that
$$ \bigl\Vert {\mathcal{H}}_{1}(x,y) \bigr\Vert \le M_{1}L_{1}+M_{2}L_{2}. $$
In a similar way, we can find that
$$ \bigl\Vert {\mathcal{H}}_{2}(x,y) \bigr\Vert \le M_{3}L_{1}+M_{4}L_{2}. $$
From the above inequalities we conclude that the operator \({\mathcal{H}}\) is uniformly bounded, since \(\|{\mathcal{H}}(x,y)\| \le (M_{1}+M_{3})L_{1}+(M_{2}+M_{4})L_{2}\).
Next, we show that \({\mathcal{H}}\) is equicontinuous. Let \(t_{1}, t _{2} \in [0,T]\) with \(t_{1}< t_{2}\). Then we have
$$\begin{aligned}& \bigl\vert {\mathcal{H}}_{1}\bigl(x(t_{2}),y(t_{2}) \bigr)-{\mathcal{H}}_{1}\bigl(x(t_{1}),y(t _{1})\bigr) \bigr\vert \\& \quad \le L_{1} \biggl\vert \frac{1}{\varGamma (\alpha )} \int _{0}^{t_{2}} (t_{2}-s)^{\alpha -1}\,ds- \frac{1}{ \varGamma (\alpha )} \int _{0}^{t_{1}} (t_{1}-s)^{\alpha -1}\,ds \biggr\vert \\& \quad \le \frac{L_{1}}{\varGamma (\alpha )} \biggl\{ \int _{0}^{t_{1}} \bigl[(t_{2}-s)^{ \alpha -1}-(t_{1}-s)^{\alpha -1} \bigr] \,ds+ \int _{t_{1}}^{t_{2}}(t_{2}-s)^{ \alpha -1} \,ds \biggr\} \\& \quad \le \frac{L_{1}}{\varGamma (\alpha +1)}\bigl[2(t_{2}-t_{1})^{\alpha }+ \bigl\vert t _{2}^{\alpha }-t_{1}^{\alpha } \bigr\vert \bigr]. \end{aligned}$$
Analogously, we can obtain
$$\begin{aligned}& \bigl\vert {\mathcal{H}}_{2}\bigl(x(t_{2}),y(t_{2}) \bigr)-{\mathcal{H}}_{2}\bigl(x(t_{1}),y(t _{1})\bigr) \bigr\vert \\& \quad \le L_{2} \biggl[\frac{T^{\beta }}{\varGamma (1+\beta )}+ \vert \lambda \vert \vert \gamma \vert \frac{\xi ^{q}\eta ^{\beta -p}}{\varGamma (1+q)\varGamma (\beta -p+1)} \biggr]\frac{t _{2}^{\beta -1}-t_{1}^{\beta -1}}{ \vert \varLambda \vert } \\& \qquad {}+L_{1}\frac{ \vert \gamma \vert \xi ^{q+\alpha }}{\varGamma (q+\alpha +1)}\frac{t _{2}^{\beta -1}-t_{1}^{\beta -1}}{ \vert \varLambda \vert }+ \frac{L_{2}}{\varGamma ( \beta +1)}\bigl[2(t_{2}-t_{1})^{\beta }+ \bigl\vert t_{2}^{\beta }-t_{1}^{\beta } \bigr\vert \bigr]. \end{aligned}$$
Thus the operator \({\mathcal{H}}(x,y)\) is equicontinuous. In view of the foregoing arguments, we deduce that the operator \({\mathcal{H}}(x,y)\) is completely continuous.
Finally, it will be verified that the set \({\mathcal{Z}}=\{(x,y) \in X\times X| (x,y)=\theta {\mathcal{H}}(x,y), 0\le \theta \le 1\}\) is bounded. Let \((x,y)\in {\mathcal{Z}}\) with \((x,y)=\theta {\mathcal{H}}(x,y)\). For any \(t\in [0,T]\), we have
$$ x(t)=\theta {\mathcal{H}}_{1}(x,y) (t),\qquad y(t)=\theta {\mathcal{H}} _{2}(x,y) (t). $$
Then
$$\begin{aligned} \bigl\vert x(t) \bigr\vert \le & M_{1}\bigl(k_{0}+k_{1} \vert x \vert +k_{2} \vert y \vert \bigr)+M_{2} \bigl(\gamma _{0}+\gamma _{1} \vert x \vert +\gamma _{2} \vert y \vert \bigr) \\ =&M_{1}k_{0}+M_{2}\gamma _{0}+(M_{1}k_{1}+M_{2}\gamma _{1}) \vert x \vert +(M_{1}k _{2}+M_{2} \gamma _{2}) \vert y \vert , \end{aligned}$$
and
$$\begin{aligned} \bigl\vert y(t) \bigr\vert \le & M_{3}\bigl(k_{0}+k_{1} \vert x \vert +k_{2} \vert y \vert \bigr)+M_{4} \bigl(\gamma _{0}+\gamma _{1} \vert x \vert +\gamma _{2} \vert y \vert \bigr) \\ =&M_{3}k_{0}+M_{4}\gamma _{0}+(M_{3}k_{1}+M_{4}\gamma _{1}) \vert x \vert +(M_{3}k _{2}+M_{4} \gamma _{2}) \vert y \vert . \end{aligned}$$
In consequence, we have
$$ \Vert x \Vert \le M_{1}k_{0}+M_{2} \gamma _{0}+(M_{1}k_{1}+M_{2} \gamma _{1}) \Vert x \Vert +(M _{1}k_{2}+M_{2} \gamma _{2}) \Vert y \Vert $$
and
$$ \Vert y \Vert \le M_{3}k_{0}+M_{4} \gamma _{0}+(M_{3}k_{1}+M_{4} \gamma _{1}) \Vert x \Vert +(M _{3}k_{2}+M_{4} \gamma _{2}) \Vert y \Vert , $$
which imply that
$$\begin{aligned} \Vert x \Vert + \Vert y \Vert \le & (M_{1}+M_{3})k_{0}+ (M_{2}+M_{4})\gamma _{0} +\bigl[(M _{1}+M_{3})k_{1}+(M_{2}+M_{4}) \gamma _{1}\bigr] \Vert x \Vert \\ &{}+\bigl[(M_{1}+M_{3})k_{2}+(M_{2}+M_{4}) \gamma _{2}\bigr] \Vert y \Vert . \end{aligned}$$
Thus we have
$$ \bigl\Vert (x,y) \bigr\Vert \le \frac{(M_{1}+M_{3})k_{0}+ (M_{2}+M_{4})\gamma _{0}}{M_{0}}, $$
where \(M_{0}=\min \{1-[(M_{1}+M_{3})k_{1}+(M_{2}+M_{4})\gamma _{1}], 1-[(M _{1}+M_{3})k_{2}+(M_{2}+M_{4})\gamma _{2}]\}\), which establishes that the set \({\mathcal{Z}}\) is bounded. Thus, by the Leray–Schauder alternative [37], the operator \({\mathcal{H}}\) has at least one fixed point. Hence system (1.1)–(1.3) has at least one solution. The proof is complete. □
The uniqueness of solutions for problem (1.1)–(1.3) is proved in the next theorem via Banach’s contraction mapping principle.
Theorem 3.2
Assume that:
- (\(A_{2}\)):
\(f,g:[0,T]\times \mathbb{R}\times \mathbb{R}\rightarrow \mathbb{R}\)are continuous functions and that there exist positive constants\(\ell _{1}\)and\(\ell _{2}\)such that, for all\(t\in [0,T]\)and\(x_{i},y_{i}\in \mathbb{R}\), \(i=1,2\), we have
$$\begin{aligned}& \bigl\vert f(t,x_{1},x_{2})-f(t,y_{1},y_{2}) \bigr\vert \leq \ell _{1} \bigl( \vert x_{1}-y_{1} \vert + \vert x _{2}-y_{2} \vert \bigr), \\& \bigl\vert g(t,x_{1},x_{2})-g(t,y_{1},y_{2}) \bigr\vert \leq \ell _{2} \bigl( \vert x_{1}-y_{1} \vert + \vert x _{2}-y_{2} \vert \bigr). \end{aligned}$$
Then system (1.1)–(1.3) has a unique solution on\([0,T]\), provided that
$$ (M_{1}+M_{3})\ell _{1}+(M_{2}+M_{4}) \ell _{2}< 1, $$
where\(M_{i}\), \(i= 1,2,3,4\), are given by (3.2)–(3.5).
Proof
Put \(\sup_{t\in [0,T]}f(t,0,0)=N_{1}<\infty \), \(\sup_{t\in [0,T]}g(t,0,0)=N_{2}<\infty \) and choose a positive number r such that
$$ r>\frac{(M_{1}+M_{3})N_{1}+(M_{2}+M_{4})N_{2}}{1-(M_{1}+M_{3})\ell _{1}-(M_{2}+M_{4})\ell _{2}}. $$
Then we show that \({\mathcal{H}}B_{r}\subset B_{r}\), where \(B_{r}=\{(x,y) \in X\times X: \|(x,y)\|\le r\}\) and \({\mathcal{H}}\) is defined by (3.1).
By assumption (\(A_{2}\)), for \((u,v)\in B_{r}\), \(t\in [0,T]\), we have
$$\begin{aligned} \bigl\vert f\bigl(t,x(t),y(t)\bigr) \bigr\vert \leq & \bigl\vert f \bigl(t,x(t),y(t)\bigr)-f(t,0,0) \bigr\vert + \bigl\vert f(t,0,0) \bigr\vert \\ \leq & \ell _{1} \bigl( \bigl\vert x(t) \bigr\vert + \bigl\vert y(t) \bigr\vert \bigr)+N_{1} \\ \leq &\ell _{1} \bigl( \Vert x \Vert + \Vert y \Vert \bigr)+N_{1} \leq \ell _{1} r + N_{1} \end{aligned}$$
and
$$ \bigl\vert g\bigl(t,x(t),y(t)\bigr) \bigr\vert \leq \ell _{2} \bigl( \Vert x \Vert + \Vert y \Vert \bigr)+N_{2} \leq \ell _{2} r +N _{2}. $$
In consequence, we obtain
$$\begin{aligned}& \bigl\vert {\mathcal{H}}_{1}(x, y) (t) \bigr\vert \\& \quad \le \frac{T^{\alpha }}{\varGamma (1+\alpha )}( \ell _{1} r + N_{1})+ \frac{ \vert \lambda \vert }{ \vert \varLambda \vert } \biggl[T^{\beta -1}\frac{\eta ^{\beta -p}}{\varGamma (\beta -p+1)}( \ell _{2} r + N_{2}) \\& \qquad {}+ \vert \lambda \vert \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \biggl( \frac{T^{\beta }}{\varGamma (1+\beta )}( \ell _{2} r + N_{2})+ \vert \gamma \vert \frac{\xi ^{q+\alpha }}{\varGamma (q+\alpha +1)}( \ell _{1} r + N _{1}) \biggr) \biggr] \\& \quad = (\ell _{1}r+N_{1})M_{1}+(\ell _{2} r+N_{2})M_{2} \\& \quad = (M_{1}\ell _{1}+M_{2}\ell _{2})r+M_{1}N_{1}+M_{2}N_{2}, \end{aligned}$$
which implies that
$$ \bigl\Vert {\mathcal{H}}_{1}(x,y) \bigr\Vert \le (M_{1}\ell _{1}+M_{2}\ell _{2})r+M_{1}N _{1}+M_{2}N_{2}. $$
In the same way, we can find that
$$ \bigl\Vert {\mathcal{H}}_{2}(x,y) \bigr\Vert \le (M_{3}\ell _{1}+M_{4}\ell _{2})r+M_{3}N _{1}+M_{4}N_{2}. $$
From the above inequalities, it follows that
$$ \bigl\Vert {\mathcal{H}}(x,y) \bigr\Vert \le \bigl[(M_{1}+M_{3}) \ell _{1}+(M_{2}+M_{4})\ell _{2} \bigr]r+(M_{1}+M_{3})N_{1}+(M_{2}+M_{4})N_{2} \le r. $$
Next, for \((x_{2},y_{2}), (x_{1},y_{1})\in X\times X\) and for any \(t\in [0,T]\), we get
$$\begin{aligned}& \bigl\vert {\mathcal{H}}_{1}(x_{2},y_{2}) (t)-{\mathcal{H}}_{1}(x_{1},y_{1}) (t) \bigr\vert \\& \quad \le \frac{T^{\alpha }}{\varGamma (1+\alpha )}\ell _{1}\bigl( \Vert x_{2}-x_{1} \Vert + \Vert y_{2}-y_{1} \Vert \bigr) \\& \qquad {}+\frac{ \vert \lambda \vert }{ \vert \varLambda \vert } \biggl[T^{\beta -1}\frac{\eta ^{\beta -p}}{ \varGamma (\beta -p+1)}\ell _{2}\bigl( \Vert x_{2}-x_{1} \Vert + \Vert y_{2}-y_{1} \Vert \bigr) \\& \qquad {}+ \vert \lambda \vert \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \biggl( \frac{T^{\beta }}{\varGamma (1+\beta )}\ell _{2}\bigl( \Vert x_{2}-x_{1} \Vert + \Vert y _{2}-y_{1} \Vert \bigr) \\& \qquad {}+ \vert \gamma \vert \frac{\xi ^{q+\alpha }}{\varGamma (q+\alpha +1)}\ell _{1}\bigl( \Vert x _{2}-x_{1} \Vert + \Vert y_{2}-y_{1} \Vert \bigr) \biggr) \biggr] \\& \quad \le ( M_{1} \ell _{1}+ M_{2} \ell _{2}) \bigl( \Vert x_{2}-x_{1} \Vert + \Vert y_{2}-y_{1} \Vert \bigr), \end{aligned}$$
which leads to
$$ \bigl\Vert {\mathcal{H}}_{1}(x_{2},y_{2})-{ \mathcal{H}}_{1}(x_{1},y_{1}) \bigr\Vert \le ( M_{1} \ell _{1}+ M_{2} \ell _{2}) \bigl( \Vert x_{2}-x_{1} \Vert + \Vert y_{2}-y_{1} \Vert \bigr). $$
(3.7)
Similarly, one can obtain
$$ \bigl\Vert {\mathcal{H}}_{2}(x_{2},y_{2}) (t)-{\mathcal{H}}_{2}(x_{1},y_{1}) \bigr\Vert \le ( M_{3} \ell _{1}+ M_{4} \ell _{2}) \bigl( \Vert x_{2}-x_{1} \Vert + \Vert y_{2}-y_{1} \Vert \bigr). $$
(3.8)
From (3.7) and (3.8), we deduce that
$$ \bigl\Vert {\mathcal{H}}(x_{2},y_{2})-{ \mathcal{H}}(x_{1},y_{1}) \bigr\Vert \le \bigl[(M_{1}+M _{3})\ell _{1}+(M_{2}+M_{4}) \ell _{2}\bigr]\bigl( \Vert x_{2}-x_{1} \Vert + \Vert y_{2}-y_{1} \Vert \bigr). $$
Since \((M_{1}+M_{3})\ell _{1}+(M_{2}+M_{4})\ell _{2}<1\), therefore, \({\mathcal{H}}\) is a contraction. So, by Banach’s contraction mapping principle, the operator \({\mathcal{H}}\) has a unique fixed point, which corresponds to a unique solution of problem (1.1)–(1.3). This completes the proof. □
Example 3.3
Consider the following system of fractional boundary value problem:
$$ \textstyle\begin{cases} {}^{c}D^{1/2}x(t) = \frac{1}{4(t+2)^{2}} \frac{ \vert x(t) \vert }{1+ \vert x(t) \vert }+1+\frac{1}{t^{3}+32}\sin ^{2}y(t),\quad t\in [0,1], \\ {}^{\mathrm{RL}}D^{3/2}x(t) = \frac{1}{32 \pi }\sin (2 \pi x(t))+\frac{ \vert y(t) \vert }{16(1+ \vert y(t) \vert )}+\frac{1}{2},\quad t\in [0,1], \\ u(0)=\sqrt{3}D^{1/2}y (\frac{1}{3} ), \\ y(0)=0,\qquad y(1)= \sqrt{2}I^{1/2}x (\frac{1}{2} ). \end{cases} $$
(3.9)
Here, \(\alpha =1/2\), \(\lambda =\sqrt{3}\), \(p=1/2\), \(\eta =1/3\), \(\beta =3/2\), \(\gamma =\sqrt{2}\), \(q=1/2\), \(\xi =1/2\), and \(f(t,x,y)= \frac{1}{4(t+2)^{2}}\frac{|x|}{1+|x|}+1+\frac{1}{t^{3}+32}\sin ^{2}y\) and \(g(t,x,y)=\frac{1}{32\pi }\sin (2\pi x)+\frac{|y|}{16(1+|y|)}+ \frac{1}{2}\). Note that \(|f(t,x_{1},y_{1})-f(t,x_{2},y_{2})| \le \frac{1}{16} |x_{1}-x_{2}|+ \frac{1}{16}|y_{1}-y_{2}|\), \(|g(t,x_{1},y_{1})-g(t,x_{2},y_{2})| \le \frac{1}{16} |x_{1}-x_{2}|+ \frac{1}{16}|y_{1}-y_{2}|\). Using the given data in (3.2)–(3.5), it is found that \(M_{1} \approx 1.5256638\), \(M_{2} \approx 0.58161945\), \(M_{3} \approx 0.258819045\), \(M_{4} \approx 1.26605098\). Clearly \(\ell _{1}=1/16\), \(\ell _{2}=1/16\), and consequently \((M_{1}+M_{3})\ell _{1}+(M_{2}+M_{4})\ell _{2} \approx 0.22700958<1\).
Thus all the conditions of Theorem 3.2 are satisfied; consequently, its conclusion applies to problem (3.9).
Multi-valued system (1.2)–(1.3)
Definition 3.4
A function \((x,y)\in C^{1}([0,T], {\mathbb{R}})\times C^{2}([0,T], {\mathbb{R}})\) satisfying the coupled boundary conditions \(x(0)= \lambda {}^{c}D^{p}y(\eta )\), \(y(0)=0\), \(y(T)=\gamma I^{q} x(\xi )\) and for which there exist functions \(f,g\in L^{1}([0,T], {\mathbb{R}})\) such that \(f(t)\in F(t,x(t),y(t))\), \(g(t)\in G(t,x(t),y(t))\) a.e. on \(t\in [0,T]\) and
$$ x(t) = I^{\alpha }f(t)+\frac{1}{\varLambda } \biggl[- \lambda T^{\beta -1} I ^{\beta -p} g(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl( \gamma I^{q+\alpha }f(\xi )-I^{\beta }g(T) \bigr) \biggr], $$
(3.10)
and
$$ y(t) = I^{\beta }g(t)+\frac{t^{\beta -1}}{\varLambda } \biggl[I^{\beta }g(T)- \gamma I^{q+\alpha }f(\xi )-\lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p}g(\eta ) \biggr] $$
(3.11)
is called a solution of coupled system (1.2)–(1.3).
For each \((x,y)\in X\times X\), the sets of selections of F, G are defined by
$$ S_{F,(x,y)}=\bigl\{ f\in L^{1}\bigl([0,T], {\mathbb{R}}\bigr): f(t)\in F\bigl(t,x(t), y(t)\bigr) \mbox{ for a.e. } t\in [0,T]\bigr\} $$
and
$$ S_{G,(x,y)}=\bigl\{ g\in L^{1}\bigl([0,T], {\mathbb{R}}\bigr): g(t)\in G\bigl(t,x(t), y(t)\bigr) \mbox{ for a.e. } t\in [0,T]\bigr\} . $$
In view of Lemma 2.5, we define the operators \(\mathcal{K}_{1}, \mathcal{K}_{2}: X\times X\to {\mathcal{P}}(X\times X)\) as follows:
$$ \begin{aligned}[b] {\mathcal{K}}_{1}(x,y)(t)&=\bigl\{ h_{1}\in X\times X: \mbox{there exist }\ f \in S_{F,(x,y)}, g\in S_{G,(x,y)}\mbox{ such that} \\ &\quad h_{1}(x,y)(t)=Q_{1}(x,y)(t), \forall t\in [0,T]\bigr\} \end{aligned} $$
(3.12)
and
$$ \begin{aligned}[b] {\mathcal{K}}_{2}(x,y)(t)&=\bigl\{ h_{2}\in X\times X: \mbox{there exists }\ f \in S_{F,(x,y)}, g\in S_{G,(x,y)} \mbox{ such that} \\ &\quad h_{2}(x,y)(t)=Q_{2}(x,y)(t), \forall t\in [0,T]\bigr\} , \end{aligned} $$
(3.13)
where
$$\begin{aligned}& Q_{1}(x,y) (t) \\& \quad = I^{\alpha }f(t)+\frac{1}{\varLambda } \biggl[-\lambda T^{\beta -1} I ^{\beta -p} g(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl( \gamma I^{q+\alpha }f(\xi )-I^{\beta }g(T) \bigr) \biggr] \end{aligned}$$
and
$$ Q_{2}(x,y) (t)= I^{\beta }g(t)+\frac{t^{\beta -1}}{\varLambda } \biggl[I^{ \beta }g(T)-\gamma I^{q+\alpha }f(\xi )-\lambda \gamma \frac{\xi ^{q}}{ \varGamma (1+q)}I^{\beta -p}g(\eta ) \biggr]. $$
Then we define an operator \(\mathcal{K}: X\times X\to {\mathcal{P}}(X \times X)\) by
$$ \mathcal{K}(x,y) (t)= \begin{pmatrix} {\mathcal{K}}_{1}(x,y)(t) \\ \mathcal{K}_{2}(x,y)(t) \end{pmatrix}, $$
where \(\mathcal{K}_{1}\) and \(\mathcal{K}_{2}\) are defined by (3.12) and (3.13).
The Carathéodory case
Our first result dealing with convex values F and G is proved via the Leray–Schauder nonlinear alternative for multi-valued maps [37].
Theorem 3.5
Suppose that the following conditions are satisfied:
- (\(B_{1}\)):
\(F,G : [0,T] \times \mathbb{R}^{2} \to {\mathcal{P}}( \mathbb{R})\)are\(L^{1}\)-Carathéodory and have convex values;
- (\(B_{2}\)):
There exist continuous nondecreasing functions\(\psi _{1}, \psi _{2},\phi _{1},\phi _{2} : [0,\infty ) \to (0,\infty )\)and functions\(p_{1},p_{2} \in C([0,T],\mathbb{R}_{+})\)such that
$$ \bigl\Vert F(t,x,y) \bigr\Vert _{\mathcal{P}}:=\sup \bigl\{ \vert f \vert : f \in F(t,x,y)\bigr\} \le p_{1}(t)\bigl[ \psi _{1}\bigl( \Vert x \Vert \bigr)+\phi _{1}\bigl( \Vert y \Vert \bigr)\bigr] $$
and
$$ \bigl\Vert G(t,x,y) \bigr\Vert _{\mathcal{P}}:=\sup \bigl\{ \vert g \vert : g \in G(t,x,y)\bigr\} \le p_{2}(t)\bigl[ \psi _{2}\bigl( \Vert x \Vert \bigr)+\phi _{2}\bigl( \Vert y \Vert \bigr)\bigr] $$
for each\((t,x,y) \in [0,T]\times \mathbb{R}^{2}\);
- (\(B_{3}\)):
There exists a number\(N>0\)such that
$$ \frac{N}{(M_{1}+M_{3}) \Vert p_{1} \Vert (\psi _{1}(N)+\phi _{1}(N))+(M_{2}+M_{4}) \Vert p_{2} \Vert (\psi _{2}(N)+\phi _{2}(N))}> 1, $$
where\(M_{i}\) (\(i=1, 2, 3, 4\)) are given by (3.2)–(3.5).
Then coupled system (1.2)–(1.3) has at least one solution on\([0,T]\).
Proof
Consider the operators \(\mathcal{K}_{1}, \mathcal{K}_{2}: X\times X\to {\mathcal{P}}(X\times X)\) defined by (3.12) and (3.13). From (\(B_{1}\)), it follows that the sets \(S_{F,(x,y)}\) and \(S_{G,(x,y)}\) are nonempty for each \((x,y)\in X \times X\). Then, for \(f\in S_{F,(x,y)}\), \(g\in S_{G,(x,y)}\) for \((x,y)\in X\times X\), we have
$$ h_{1}(x,y) (t) = I^{\alpha }f(t)+\frac{1}{\varLambda } \biggl[-\lambda T^{ \beta -1} I^{\beta -p} g(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl(\gamma I^{q+\alpha }f(\xi )-I^{ \beta }g(T) \bigr) \biggr] $$
and
$$ h_{2}(x,y) (t) = I^{\beta }g(t)+\frac{t^{\beta -1}}{\varLambda } \biggl[I ^{\beta }g(T)-\gamma I^{q+\alpha }f(\xi )-\lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p}g(\eta ) \biggr], $$
where \(h_{1}\in {\mathcal{K}}_{1}(x,y)\), \(h_{2}\in {\mathcal{K}}_{2}(x,y)\), and so \((h_{1},h_{2})\in {\mathcal{K}}(x,y)\).
It will be established in several steps that the operator \(\mathcal{K}\) satisfies the hypotheses of Leray–Schauder nonlinear alternative. First we show that \(\mathcal{K}(x,y)\) is convex valued. Let \((h_{i},\bar{h}_{i})\in (\mathcal{K}_{1}, \mathcal{K}_{2})\), \(i=1,2\). Then there exist \(f_{i}\in S_{F,(x,y)}\), \(g_{i} \in S_{G,(x,y)}\), \(i=1,2\), such that, for each \(t \in [0,T]\), we have
$$ h_{i}(t)= I^{\alpha }f(t)+\frac{1}{\varLambda } \biggl[- \lambda T^{\beta -1} I^{\beta -p} g(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl( \gamma I^{q+\alpha }f(\xi )-I^{\beta }g(T) \bigr) \biggr] $$
and
$$ \bar{h}_{i}(t) = I^{\beta }g(t)+\frac{t^{\beta -1}}{\varLambda } \biggl[I ^{\beta }g(T)-\gamma I^{q+\alpha }f(\xi )-\lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p}g(\eta ) \biggr]. $$
Let \(0 \le \omega \le 1\). Then, for each \(t \in [0,T]\), we have
$$\begin{aligned}& \bigl[\omega h_{1}+(1-\omega )h_{2}\bigr](t) \\& \quad = I^{\alpha }\bigl[\omega f_{1}(s)+(1-\omega )f_{2}(s)\bigr](t)+\frac{1}{ \varLambda } \biggl[-\lambda T^{\beta -1} I^{\beta -p} \bigl[\omega g_{1}(s)+(1- \omega )g_{2}(s)\bigr](\eta ) \\& \qquad {}+\lambda \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl(I^{\beta } \bigl[\omega g_{1}(s)+(1-\omega )g_{2}(s)\bigr](T) \\& \qquad {}-\gamma I^{q+\alpha }\bigl[\omega f_{1}(s)+(1-\omega )f_{2}(s)\bigr](\xi ) \bigr) \biggr] \end{aligned}$$
and
$$\begin{aligned}& \bigl[\omega \bar{h}_{1}+(1-\omega )\bar{h}_{2} \bigr](t) \\& \quad = I^{\beta }\bigl[\omega g_{1}(s)+(1-\omega )g_{2}(s)\bigr](t)+\frac{t^{ \beta -1}}{\varLambda } \biggl[I^{\beta } \bigl[\omega g_{1}(s)+(1-\omega )g_{2}(s)\bigr](T) \\& \qquad {}-\gamma I^{q+\alpha }\bigl[\omega f_{1}(s)+(1-\omega )f_{2}(s)\bigr](\xi )- \lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p} \bigl[\omega g_{1}(s)+(1- \omega )g_{2}(s)\bigr](\eta ) \biggr]. \end{aligned}$$
We deduce that \(S_{F,(x,y)}\), \(S_{G,(x,y)}\) are convex valued, since F, G are convex valued. Obviously, \(\omega h_{1}+(1-\omega )h_{2} \in {\mathcal{K}}_{1}\), \(\omega \bar{h}_{1}+(1-\omega )\bar{h}_{2} \in {\mathcal{K}}_{2}\), and hence \(\omega (h_{1},\bar{h}_{1})+(1- \omega )(h_{2},\bar{h}_{2})\in {\mathcal{K}}\).
Now we show that \(\mathcal{K}\) maps bounded sets into bounded sets in \(X\times X\). For a positive number r, let \(B_{r} = \{(x,y) \in X \times X: \|(x,y)\| \le r \}\) be a bounded set in \(X\times X\). Then there exist \(f \in S_{F,(x,y)}\), \(g \in S_{G,(x,y)}\) such that
$$ h_{1}(x,y) (t) = I^{\alpha }f(t)+\frac{1}{\varLambda } \biggl[-\lambda T^{ \beta -1} I^{\beta -p} g(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl(\gamma I^{q+\alpha }f(\xi )-I^{ \beta }g(T) \bigr) \biggr] $$
and
$$ h_{2}(x,y) (t) = I^{\beta }g(t)+\frac{t^{\beta -1}}{\varLambda } \biggl[I ^{\beta }g(T)-\gamma I^{q+\alpha }f(\xi )-\lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p}g(\eta ) \biggr]. $$
Then we have
$$\begin{aligned}& \bigl\vert h_{1}(x,y) (t) \bigr\vert \\& \quad \le I^{\alpha } \bigl\vert f(t) \bigr\vert +\frac{1}{ \vert \varLambda \vert } \biggl[ \vert \lambda \vert T^{ \beta -1} I^{\beta -p} \bigl\vert g(\eta ) \bigr\vert + \vert \lambda \vert \frac{\varGamma (\beta )}{ \varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl(I^{\beta } \bigl\vert g(T) \bigr\vert + \vert \gamma \vert I ^{q+\alpha } \bigl\vert f(\xi ) \bigr\vert \bigr) \biggr] \\& \quad \le \frac{T^{\alpha }}{\varGamma (1+\alpha )} \Vert p_{1} \Vert \bigl(\psi _{1}(r)+\phi _{1}(r)\bigr)+\frac{1}{ \vert \varLambda \vert } \biggl[ \vert \lambda \vert T^{\beta -1}\frac{ \eta ^{\beta -p}}{\varGamma (\beta -p+1)} \Vert p_{2} \Vert \bigl(\psi _{2}(r)+\phi _{2}(r) \bigr) \\& \qquad {}+ \vert \lambda \vert \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \biggl( \frac{T^{\beta }}{\varGamma (1+\beta )} \Vert p_{2} \Vert \bigl(\psi _{2}(r)+\phi _{2}(r)\bigr) \\& \qquad {}+ \vert \gamma \vert \frac{\xi ^{q+\alpha }}{\varGamma (q+\alpha +1)} \Vert p_{1} \Vert \bigl(\psi _{1}(r)+\phi _{1}(r)\bigr) \biggr) \biggr] \\& \quad = M_{1} \Vert p_{1} \Vert \bigl(\psi _{1}(r)+\phi _{1}(r)\bigr)+M_{2} \Vert p_{2} \Vert \bigl(\psi _{2}(r)+ \phi _{2}(r)\bigr) \end{aligned}$$
and
$$ \bigl\vert h_{2}(x,y) (t) \bigr\vert \le M_{3} \Vert p_{1} \Vert \bigl(\psi _{1}(r)+\phi _{1}(r)\bigr)+M_{4} \Vert p_{2} \Vert \bigl(\psi _{2}(r)+\phi _{2}(r)\bigr). $$
Thus,
$$ \bigl\Vert h_{1}(x,y) \bigr\Vert \le M_{1} \Vert p_{1} \Vert \bigl(\psi _{1}(r)+\phi _{1}(r) \bigr)+M_{2} \Vert p _{2} \Vert \bigl(\psi _{2}(r)+\phi _{2}(r)\bigr) $$
and
$$ \bigl\Vert h_{2}(x,y) \bigr\Vert \le M_{3} \Vert p_{1} \Vert \bigl(\psi _{1}(r)+\phi _{1}(r) \bigr)+M_{4} \Vert p _{2} \Vert \bigl(\psi _{2}(r)+\phi _{2}(r)\bigr). $$
Hence we obtain
$$\begin{aligned} \bigl\Vert (h_{1},h_{2}) \bigr\Vert =& \bigl\Vert h_{1}(x,y) \bigr\Vert + \bigl\Vert h_{2}(x,y) \bigr\Vert \\ \le &(M_{1}+M_{3}) \Vert p_{1} \Vert \bigl(\psi _{1}(r)+\phi _{1}(r)\bigr)+(M_{2}+M_{4}) \Vert p _{2} \Vert \bigl(\psi _{2}(r)+\phi _{2}(r)\bigr). \end{aligned}$$
Next, we show that \(\mathcal{K}\) is equicontinuous. Let \(t_{1}, t_{2} \in [0,T]\) with \(t_{1}< t_{2}\). Then there exist \(f \in S_{F,(x,y)}\), \(g \in S_{G,(x,y)}\) such that
$$ h_{1}(x,y) (t) = I^{\alpha }f(t)+\frac{1}{\varLambda } \biggl[-\lambda T^{ \beta -1} I^{\beta -p} g(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl(\gamma I^{q+\alpha }f(\xi )-I^{ \beta }g(T) \bigr) \biggr] $$
and
$$ h_{2}(x,y) (t) = I^{\beta }g(t)+\frac{t^{\beta -1}}{\varLambda } \biggl[I ^{\beta }g(T)-\gamma I^{q+\alpha }f(\xi )-\lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p}g(\eta ) \biggr]. $$
Then we have
$$\begin{aligned}& \bigl\vert h_{1}(x,y) (t_{2})-h_{1}(x,y) (t_{1}) \bigr\vert \\& \quad \le \Vert p_{1} \Vert \bigl(\psi _{1}(r)+\phi _{1}(r)\bigr) \biggl\vert \frac{1}{\varGamma (\alpha )} \int _{0}^{t_{2}} (t_{2}-s)^{\alpha -1}\,ds- \frac{1}{ \varGamma (\alpha )} \int _{0}^{t_{1}} (t_{1}-s)^{\alpha -1}\,ds \biggr\vert \\& \quad \le \frac{ \Vert p_{1} \Vert (\psi _{1}(r)+\phi _{1}(r))}{\varGamma (\alpha )} \biggl\{ \int _{0}^{t_{1}} \bigl[(t_{2}-s)^{\alpha -1}-(t_{1}-s)^{\alpha -1} \bigr] \,ds+ \int _{t_{1}}^{t_{2}}(t_{2}-s)^{\alpha -1} \,ds \biggr\} \\& \quad \le \frac{ \Vert p_{1} \Vert (\psi _{1}(r)+\phi _{1}(r))}{\varGamma (\alpha +1)}\bigl[2(t _{2}-t_{1})^{\alpha }+ \bigl\vert t_{2}^{\alpha }-t_{1}^{\alpha } \bigr\vert \bigr]. \end{aligned}$$
Analogously, we can obtain
$$\begin{aligned}& \bigl\vert h_{2}(x,y) (t_{2})-h_{2}(x,y) (t_{1}) \bigr\vert \\ & \quad \le \Vert p_{2} \Vert \bigl(\psi _{2}(r)+\phi _{2}(r)\bigr) \biggl[\frac{T^{\beta }}{\varGamma (1+\beta )}+ \vert \lambda \vert \vert \gamma \vert \frac{\xi ^{q}\eta ^{\beta -p}}{\varGamma (1+q) \varGamma (\beta -p+1)} \biggr]\frac{t_{2}^{\beta -1}-t_{1}^{\beta -1}}{ \vert \varLambda \vert } \\ & \qquad {}+ \Vert p_{1} \Vert \bigl(\psi _{1}(r)+\phi _{1}(r)\bigr)\frac{ \vert \gamma \vert \xi ^{q+\alpha }}{ \varGamma (q+\alpha +1)}\frac{t_{2}^{\beta -1}-t_{1}^{\beta -1}}{ \vert \varLambda \vert } \\ & \qquad {}+\frac{ \Vert p_{2} \Vert (\psi _{2}(r)+\phi _{2}(r))}{\varGamma (\beta +1)}\bigl[2(t _{2}-t_{1})^{\beta }+ \bigl\vert t_{2}^{\beta }-t_{1}^{\beta } \bigr\vert \bigr]. \end{aligned}$$
Therefore, the operator \(\mathcal{K}(x,y)\) is equicontinuous, and thus, by the Ascoli–Arzelá theorem, the operator \(\mathcal{K}(x,y)\) is completely continuous. We know from [35, Proposition 1.2] that a completely continuous operator is upper semicontinuous if it has a closed graph. Thus we need to prove that \(\mathcal{K}\) has a closed graph. Let \((x_{n},y_{n})\to (x_{*},y_{*})\), \((h_{n},\bar{h}_{n}) \in {\mathcal{K}}(x_{n},y_{n})\) and \((h_{n},\bar{h}_{n})\to (h_{*}, \bar{h}_{*})\), then we need to show \((h_{*},\bar{h}_{*})\in {\mathcal{K}}(x _{*},y_{*})\). Observe that \((h_{n},\bar{h}_{n})\in {\mathcal{K}}(x _{n},y_{n})\) implies that there exist \(f_{n}\in S_{F,(x_{n},y_{n})}\) and \(g_{n}\in S_{G,(x_{n},y_{n})}\) such that
$$\begin{aligned}& h_{n}(x_{n},y_{n}) (t) \\ & \quad = I^{\alpha }f_{n}(t)+\frac{1}{\varLambda } \biggl[-\lambda T^{\beta -1} I ^{\beta -p} g_{n}(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma ( \beta -p)} \eta ^{\beta -p-1} \bigl(\gamma I^{q+\alpha }f_{n}( \xi )-I ^{\beta }g_{n}(T) \bigr) \biggr] \end{aligned}$$
and
$$ \bar{h}_{n}(x_{n},y_{n}) (t)= I^{\beta }g_{n}(t)+\frac{t^{\beta -1}}{ \varLambda } \biggl[I^{\beta }g_{n}(T)-\gamma I^{q+\alpha }f_{n}( \xi )- \lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p}g_{n}( \eta ) \biggr]. $$
Let us consider the continuous linear operators \(\varPhi _{1}, \varPhi _{2}: L ^{1}([0,T], X\times X)\to C([0,T], X\times X)\) given by
$$ \varPhi _{1}(x,y) (t) = I^{\alpha }f(t)+\frac{1}{\varLambda } \biggl[-\lambda T ^{\beta -1} I^{\beta -p} g(\eta )+\lambda \frac{\varGamma (\beta )}{ \varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl(\gamma I^{q+\alpha }f( \xi )-I^{\beta }g(T) \bigr) \biggr] $$
and
$$ \varPhi _{2}(x,y) (t) = I^{\beta }g(t)+\frac{t^{\beta -1}}{\varLambda } \biggl[I ^{\beta }g(T)-\gamma I^{q+\alpha }f(\xi )-\lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p}g(\eta ) \biggr]. $$
From [38] we know that \((\varPhi _{1},\varPhi _{2})\circ (S_{F},S _{G})\) is a closed graph operator. Further, we have \((h_{n},\bar{h} _{n}) \in (\varPhi _{1},\varPhi _{2})\circ (S_{F,(x_{n},y_{n})}, S_{G,(x_{n},y _{n})})\) for all n. Since \((x_{n},y_{n})\to (x_{*},y_{*})\), \((h_{n},\bar{h}_{n})\to (h_{*},\bar{h}_{*})\) it follows that \(f_{*}\in S_{F,(x,y)}\) and \(g_{*}\in S_{G,(x,y)}\) such that
$$\begin{aligned}& h_{*}(x_{*},y_{*}) (t) \\ & \quad = I^{\alpha }f_{*}(t)+\frac{1}{\varLambda } \biggl[-\lambda T^{\beta -1} I ^{\beta -p} g_{*}(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma ( \beta -p)} \eta ^{\beta -p-1} \bigl(\gamma I^{q+\alpha }f_{*}( \xi )-I ^{\beta }g_{*}(T) \bigr) \biggr] \end{aligned}$$
and
$$ \bar{h}_{*}(x_{*},y_{*}) (t)+I^{\beta }g_{*}(t)+\frac{t^{\beta -1}}{ \varLambda } \biggl[I^{\beta }g_{*}(T)-\gamma I^{q+\alpha }f_{*}( \xi )- \lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p}g_{*}( \eta ) \biggr], $$
that is, \((h_{n},\bar{h}_{n})\in {\mathcal{K}}(x_{*},y_{*})\).
Finally, we establish the a priori bounds on solutions. Let \((x,y)\in \nu {\mathcal{K}}(x,y)\). Then there exist \(f\in S_{F,(x,y)}\) and \(g\in S_{G,(x,y)}\) such that
$$ x(t) = \nu I^{\alpha }f(t)+\nu \frac{1}{\varLambda } \biggl[-\lambda T^{ \beta -1} I^{\beta -p} g(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl(\gamma I^{q+\alpha }f(\xi )-I^{ \beta }g(T) \bigr) \biggr] $$
and
$$ y(t) = \nu I^{\beta }g(t)+\nu \frac{t^{\beta -1}}{\varLambda } \biggl[I^{ \beta }g(T)- \gamma I^{q+\alpha }f(\xi )-\lambda \gamma \frac{\xi ^{q}}{ \varGamma (1+q)}I^{\beta -p}g( \eta ) \biggr]. $$
For each \(t\in [0,T]\), we obtain
$$ \Vert x \Vert \le M_{1} \Vert p_{1} \Vert \bigl( \psi _{1}\bigl( \Vert x \Vert \bigr)+\phi _{1}\bigl( \Vert y \Vert \bigr)\bigr)+M_{2} \Vert p_{2} \Vert \bigl(\psi _{2}\bigl( \Vert x \Vert \bigr)+\phi _{2} \bigl( \Vert y \Vert \bigr)\bigr) $$
and
$$ \Vert y \Vert \le M_{3} \Vert p_{1} \Vert \bigl(\psi _{1}\bigl( \Vert x \Vert \bigr)+\phi _{1} \bigl( \Vert y \Vert \bigr)\bigr)+M_{4} \Vert p_{2} \Vert \bigl(\psi _{2}\bigl( \Vert x \Vert \bigr)+\phi _{2}\bigl( \Vert y \Vert \bigr)\bigr), $$
following the same arguments as in the second step.
Thus
$$\begin{aligned} \bigl\Vert (x,y) \bigr\Vert =& \Vert x \Vert + \Vert y \Vert \\ \le &(M_{1}+M_{3}) \Vert p_{1} \Vert \bigl(\psi _{1}\bigl( \Vert x \Vert \bigr)+\phi _{1} \bigl( \Vert y \Vert \bigr)\bigr) \\ &{}+(M_{2}+M_{4}) \Vert p_{2} \Vert \bigl(\psi _{2}\bigl( \Vert x \Vert \bigr)+\phi _{2} \bigl( \Vert y \Vert \bigr)\bigr), \end{aligned}$$
which implies that
$$ \frac{ \Vert (x,y) \Vert }{(M_{1}+M_{3}) \Vert p_{1} \Vert (\psi _{1}( \Vert x \Vert )+\phi _{1}( \Vert y \Vert ))+(M_{2}+M_{4}) \Vert p_{2} \Vert (\psi _{2}( \Vert x \Vert )+\phi _{2}( \Vert y \Vert ))}\le 1. $$
In view of (\(B_{3}\)), there exists N such that \(\|(x,y)\|\ne N\). Let us set
$$ U = \bigl\{ (x,y)\in X\times X: \bigl\Vert (x,y) \bigr\Vert < N \bigr\} . $$
Note that the operator \(\mathcal{K} :\overline{U} \to \mathcal{P}_{cp,cv}(X) \times {\mathcal{P}}_{cp,cv}(X)\) is completely continuous and upper semicontinuous. There is no \((x,y) \in \partial U\) such that \((x,y) \in \nu {\mathcal{K}}(x,y)\) for some \(\nu \in (0,1)\) by the choice of U. Hence, by the nonlinear alternative of Leray–Schauder type [37], we deduce that \(\mathcal{K}\) has a fixed point \((x,y) \in \overline{U}\), which is a solution of coupled system (1.2)–(1.3). This completes the proof. □
The Lipschitz case
This subsection is concerned with the case when the multi-valued maps in system (1.2) have non-convex values.
Let \((X,d)\) be a metric space induced from the normed space \((X; \|\cdot \|)\), and let \(H_{d} : {\mathcal{P}}(X) \times {\mathcal{P}}(X) \to \mathbb{R} \cup \{\infty \}\) be defined by \(H_{d}(U, V) = \max \{ \sup_{u \in U}d(u,V), \sup_{v \in V}d(U, v)\}\), where \(d(U,v) = \inf_{u\in U}d(u, v)\) and \(d(u,V) = \inf_{v\in V}d(u, v)\). Then \(({\mathcal{P}}_{b,cl}(X), H_{d})\) is a metric space and \(({\mathcal{P}}_{cl}(X), H_{d})\) is a generalized metric space (see [39]).
Definition 3.6
A multi-valued operator \(\mathcal{G} : X \to {\mathcal{P}}_{cl}(X)\) is called (i) γ-Lipschitz if and only if there exists \(\gamma > 0\) such that \(H_{d}(\mathcal{G}(a),\mathcal{G}(b)) \le \gamma d(a,b)\) for each \(a, b \in X\); and (ii) a contraction if and only if it is γ-Lipschitz with \(\gamma < 1\).
In the forthcoming result, we make use of the fixed point theorem for multi-valued maps due to Covitz and Nadler [40].
Theorem 3.7
If
- (\(B_{3}\)):
\(F, G: [0,T] \times \mathbb{R}^{2} \to {\mathcal{P}} _{cp}(\mathbb{R})\)are such that\(F(\cdot ,x, y) : [0,T] \to {\mathcal{P}} _{cp}(\mathbb{R})\)and\(G(\cdot ,x, y) : [0,T] \to {\mathcal{P}}_{cp}( \mathbb{R})\)are measurable for each\(x,y \in \mathbb{R}\);
- (\(B_{4}\)):
$$ H_{d}(F(t,x,y), F(t,\bar{x},\bar{y})\le m_{1}(t) \bigl( \vert x-\bar{x} \vert + \vert y- \bar{y} \vert \bigr) $$
and
$$ H_{d}(G(t,x,y), G(t,\bar{x},\bar{y})\le m_{2}(t) \bigl( \vert x-\bar{x} \vert + \vert y- \bar{y} \vert \bigr) $$
for almost all\(t \in [0,T]\)and\(x,y, \bar{x},\bar{y} \in \mathbb{R}\)with\(m_{1},m_{2} \in C([0,T], \mathbb{R}^{+})\)and\(d(0,F(t, 0,0)) \le m_{1}(t)\), \(d(0,G(t,0,0))\le m_{2}(t)\)for almost all\(t \in [0,T]\)
hold, then coupled system (1.2)–(1.3) has at least one solution on\([0,T]\)provided that
$$ (M_{1}+M_{3}) \Vert m_{1} \Vert +(M_{2}+M_{4}) \Vert m_{2} \Vert < 1. $$
(3.14)
Proof
The sets \(S_{F,(x,y)}\) and \(S_{G,(x,y)}\) are nonempty for each \((x,y) \in X\times Y\) by assumption (\(B_{3}\)), so F and G have measurable selections (see Theorem III.6 in [41]). Now we show that the operator \(\mathcal{K}\) satisfies the assumptions of Covitz and Nadler’s fixed point theorem [40].
First we show that \(\mathcal{K}(x,y)\in {\mathcal{P}}_{cl}(X)\times {\mathcal{P}}_{cl}(X)\) for each \((x,y)\in X\times X\). Let \((h_{n}, \bar{h} _{n})\in {\mathcal{K}}(x_{n},y_{n})\) such that \((h_{n}, \bar{h}_{n})\to (h,\bar{h})\) in \(X\times X\). Then \((h,\bar{h})\in X \times X\) and there exist \(f_{n}\in S_{F,(x_{n},y_{n})}\) and \(g_{n}\in S_{G,(x_{n},y_{n})}\) such that
$$\begin{aligned}& h_{n}(x_{n},y_{n}) (t) \\& \quad = I^{\alpha }f_{n}(t)+\frac{1}{\varLambda } \biggl[- \lambda T^{\beta -1} I^{\beta -p} g_{n}(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma ( \beta -p)} \eta ^{\beta -p-1} \bigl(I^{\beta }g_{n}(T)- \gamma I^{q+ \alpha }f_{n}(\xi ) \bigr) \biggr] \end{aligned}$$
and
$$ \bar{h}_{n}(x_{n},y_{n}) (t) = I^{\beta }g_{n}(t)+\frac{t^{\beta -1}}{ \varLambda } \biggl[I^{\beta }g_{n}(T)-\gamma I^{q+\alpha }f_{n}( \xi )- \lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p}g_{n}( \eta ) \biggr]. $$
Since F and G have compact values, we pass onto subsequences (denoted as sequences) to get that \(f_{n}\) and \(g_{n}\) converge to f and g in \(L^{1} ([0,T],\mathbb{R})\) respectively. Thus \(f \in S_{F,(x,y)}\) and \(g\in S_{G,(x,y)}\) for each \(t \in [0,T]\) and that
$$\begin{aligned} h_{n}(x_{n},y_{n}) (t) \to& h(x,y) (t) \\ =& I^{\alpha }f(t)+\frac{1}{\varLambda } \biggl[-\lambda T^{\beta -1} I ^{\beta -p} g(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl( \gamma I^{q+\alpha }f(\xi )-I^{\beta }g(T) \bigr) \biggr], \end{aligned}$$
and
$$\begin{aligned} \bar{h}_{n}(x_{n},y_{n}) (t) \to& \bar{h}(x,y) (t) \\ =& I^{\beta }g(t)+\frac{t^{\beta -1}}{\varLambda } \biggl[I^{\beta }g(T)- \gamma I^{q+\alpha }f(\xi )-\lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p}g( \eta ) \biggr]. \end{aligned}$$
Hence \((h,\bar{h}) \in {\mathcal{K}}\), which implies that \(\mathcal{K}\) is closed.
Next we show that there exists \(\widehat{\theta }<1\) (defined by (3.14)) such that
$$ H_{d}\bigl(\mathcal{K}(x,y), \mathcal{K}(\bar{x},\bar{y})\bigr)\le \widehat{\theta }\bigl( \Vert x-\bar{x} \Vert + \Vert y-\bar{y} \Vert \bigr) \quad \mbox{for each } x, \bar{x}, y,\bar{y}\in X. $$
Let \((x, \bar{x}),(y,\bar{y})\in X\times X\) and \((h_{1},\bar{h_{1}}) \in {\mathcal{K}}(x,y)\). Then there exist \(f_{1} \in S_{F,(x,y)}\) and \(g_{1}\in S_{G,(x,y)}\) such that, for each \(t \in [0,T]\), we have
$$\begin{aligned}& h_{1}(x_{n},y_{n}) (t) \\& \quad = I^{\alpha }f_{1}(t)+\frac{1}{\varLambda } \biggl[-\lambda T^{\beta -1} I ^{\beta -p} g_{1}(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma ( \beta -p)} \eta ^{\beta -p-1} \bigl(I^{\beta }g_{1}(T)- \gamma I^{q+ \alpha }f_{1}(\xi ) \bigr) \biggr] \end{aligned}$$
and
$$ \bar{h}_{1}(x_{n},y_{n}) (t) = I^{\beta }g_{1}(t)+\frac{t^{\beta -1}}{ \varLambda } \biggl[I^{\beta }g_{1}(T)- \gamma I^{q+\alpha }f_{1}(\xi )- \lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p}g_{1}(\eta ) \biggr]. $$
By (\(B_{4}\)), we have
$$ H_{d}\bigl(F(t,x,y), F(t,\bar{x},\bar{y})\bigr)\le m_{1}(t) \bigl( \bigl\vert x(t)-\bar{x}(t) \bigr\vert + \bigl\vert y(t)- \bar{y}(t) \bigr\vert \bigr) $$
and
$$ H_{d}\bigl(G(t,x,y), G(t,\bar{x},\bar{y})\bigr)\le m_{2}(t) \bigl( \bigl\vert x(t)-\bar{x}(t) \bigr\vert + \bigl\vert y(t)- \bar{y}(t) \bigr\vert \bigr). $$
So, there exist \(f \in F(t,x(t),y(t))\) and \(g\in G(t,x(t), y(t))\) such that
$$ \bigl\vert f_{1}(t)-w \bigr\vert \le m_{1}(t) \bigl( \bigl\vert x(t)-\bar{x}(t) \bigr\vert + \bigl\vert y(t)-\bar{y}(t) \bigr\vert \bigr) $$
and
$$ \bigl\vert g_{1}(t)-z \bigr\vert \le m_{2}(t) \bigl( \bigl\vert x(t)-\bar{x}(t) \bigr\vert + \bigl\vert y(t)-\bar{y}(t) \bigr\vert \bigr). $$
Define \(V_{1}, V_{2} : [0,T] \to \mathcal{P}(\mathbb{R})\) by
$$ V_{1}(t)=\bigl\{ f \in L^{1}\bigl([0,T],\mathbb{R}\bigr) : \bigl\vert f_{1}(t)-w \bigr\vert \le m_{1}(t) \bigl( \bigl\vert x(t)- \bar{x}(t) \bigr\vert + \bigl\vert y(t)-\bar{y}(t) \bigr\vert \bigr)\bigr\} $$
and
$$ V_{2}(t)=\bigl\{ g \in L^{1}\bigl([0,T],\mathbb{R}\bigr) : \bigl\vert g_{1}(t)-z \bigr\vert \le m_{2}(t) \bigl( \bigl\vert x(t)- \bar{x}(t) \bigr\vert + \bigl\vert y(t)-\bar{y}(t) \bigr\vert \bigr)\bigr\} . $$
Since the multi-valued operators \(V_{1}(t)\cap F(t,x(t), y(t))\) and \(V_{2}(t)\cap G(t,x(t), y(t))\) are measurable (Proposition III.4 in [41]), there exist functions \(f_{2}(t)\), \(g_{2}(t)\) which are a measurable selection for \(V_{1}\), \(V_{2}\) and \(f_{2}(t)\in F(t, x(t), y(t))\), \(g_{2}(t)\in G(t, x(t), y(t))\) such that, for a.e. \(t \in [0,T]\), we have
$$ \bigl\vert f_{1}(t)-f_{2}(t) \bigr\vert \le m_{1}(t) \bigl( \bigl\vert x(t)-\bar{x}(t) \bigr\vert + \bigl\vert y(t)-\bar{y}(t) \bigr\vert \bigr) $$
and
$$ \bigl\vert g_{1}(t)-g_{2}(t) \bigr\vert \le m_{g}(t) \bigl( \bigl\vert x(t)-\bar{x}(t) \bigr\vert + \bigl\vert y(t)-\bar{y}(t) \bigr\vert \bigr). $$
Let
$$\begin{aligned}& h_{2}(x_{n},y_{n}) (t) \\& \quad = I^{\alpha }f_{2}(t)+\frac{1}{\varLambda } \biggl[-\lambda T^{\beta -1} I ^{\beta -p} g_{2}(\eta )+\lambda \frac{\varGamma (\beta )}{\varGamma ( \beta -p)} \eta ^{\beta -p-1} \bigl(I^{\beta }g_{2}(T)- \gamma I^{q+ \alpha }f_{2}(\xi ) \bigr) \biggr] \end{aligned}$$
and
$$ \bar{h}_{2}(x_{n},y_{n}) (t) = I^{\beta }g_{2}(t)+\frac{t^{\beta -1}}{ \varLambda } \biggl[I^{\beta }g_{2}(T)- \gamma I^{q+\alpha }f_{2}(\xi )- \lambda \gamma \frac{\xi ^{q}}{\varGamma (1+q)}I^{\beta -p}g_{2}(\eta ) \biggr]. $$
Thus,
$$\begin{aligned}& \bigl\vert h_{1}(x,y) (t)-h_{2}(x,y) (t) \bigr\vert \\& \quad \le I^{\alpha } \bigl\vert f_{1}(s)-f_{2}(s) \bigr\vert (t)+\frac{1}{ \vert \varLambda \vert } \biggl[ \vert \lambda \vert T^{\beta -1} I^{\beta -p} \bigl\vert g_{1}(s)-g_{2}(s) \bigr\vert (\eta ) \\& \qquad {}+ \vert \lambda \vert \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl(I^{\beta } \bigl\vert g_{1}(s)-g_{2}(s) \bigr\vert (T)+ \vert \gamma \vert I^{q+\alpha } \bigl\vert f_{1}(s)-f _{2}(s) \bigr\vert (\xi ) \bigr) \biggr] \\& \quad \le I^{\alpha }m_{1}(s) \bigl( \bigl\vert x(s)-\bar{x}(s) \bigr\vert + \bigl\vert y(s)-\bar{y}(s) \bigr\vert \bigr) (t) \\& \qquad {}+\frac{1}{ \vert \varLambda \vert } \biggl[ \vert \lambda \vert T^{\beta -1} I^{\beta -p} m _{2}(s) \bigl( \bigl\vert x(s)-\bar{x}(s) \bigr\vert + \bigl\vert y(s)-\bar{y}(s) \bigr\vert \bigr) (\eta ) \\& \qquad {}+ \vert \lambda \vert \frac{\varGamma (\beta )}{\varGamma (\beta -p)} \eta ^{\beta -p-1} \bigl(I^{\beta }m_{2}(s) \bigl( \bigl\vert x(s)-\bar{x}(s) \bigr\vert + \bigl\vert y(s)-\bar{y}(s) \bigr\vert \bigr) (T) \\& \qquad {}+ \vert \gamma \vert I^{q+\alpha }m_{1}(s) \bigl( \bigl\vert x(s)-\bar{x}(s) \bigr\vert + \bigl\vert y(s)-\bar{y}(s) \bigr\vert \bigr) ( \xi ) \bigr) \biggr] \\& \quad \le M_{1} \Vert m_{1} \Vert \bigl( \Vert x- \bar{x} \Vert + \Vert y-\bar{y} \Vert \bigr)+M_{2} \Vert m_{2} \Vert \bigl( \Vert x- \bar{x} \Vert + \Vert y-\bar{y} \Vert \bigr). \end{aligned}$$
Hence
$$ \bigl\Vert h_{1}(x,y)-h_{2}(x,y) \bigr\Vert \le \bigl(M_{1} \Vert m_{1} \Vert +M_{2} \Vert m_{2} \Vert \bigr) \bigl( \Vert x- \bar{x} \Vert + \Vert y-\bar{y} \Vert \bigr). $$
In a similar manner, we can establish that
$$ \bigl\Vert \bar{h}_{1}(x,y)-\bar{h}_{2}(x,y) \bigr\Vert \le \bigl(M_{3} \Vert m_{1} \Vert +M_{4} \Vert m_{2} \Vert \bigr) \bigl( \Vert x- \bar{x} \Vert + \Vert y-\bar{y} \Vert \bigr). $$
Thus
$$ \bigl\Vert (h_{1},\bar{h}_{1}), (h_{2}, \bar{h}_{2}) \bigr\Vert \le \bigl[(M_{1}+M_{3}) \Vert m_{1} \Vert +(M_{2}+M_{4}) \Vert m_{2} \Vert \bigr]\bigl( \Vert x-\bar{x} \Vert + \Vert y- \bar{y} \Vert \bigr). $$
Analogously, interchanging the roles of \((x,y)\) and \((\bar{x},\bar{y})\), we can obtain
$$ H_{d}\bigl(T(x,y), T(\bar{x},\bar{y})\bigr) \le \bigl[(M_{1}+M_{3}) \Vert m_{1} \Vert +(M_{2}+M _{4}) \Vert m_{2} \Vert \bigr] \bigl( \Vert x-\bar{x} \Vert + \Vert y-\bar{y} \Vert \bigr). $$
Therefore \(\mathcal{K}\) is a contraction in view of assumption (3.14). Hence it follows by Covitz and Nadler’s fixed point theorem [40] that \(\mathcal{K}\) has a fixed point \((x,y)\), which is a solution of problem (1.2)–(1.3). This completes the proof. □