1 Introduction

Halburd and Korhonen [4] used Nevanlinna theory to single out difference equations in this form

$$ Y(z+1) + Y(z-1) = R(z,Y), $$
(1.1)

where \(R(z,Y)\) is rational in O and meromorphic in z, has an admissible meromorphic solution of finite order, then either O satisfies a difference Riccati equation

$$ Y(z+1) = \frac{p(z+1)Y(z)+q(z)}{Y(z)+p(z)}, $$
(1.2)

where \(p(z), q(z) \in S(Y)\), where \(S(Y)\) denotes the field of small functions with respect to Y, or Eq. (1.1) can be transformed to one of the following equations:

$$\begin{aligned}& Y(z+1)+Y(z)+Y(z-1)=\frac{\varsigma_{1}z+\varsigma_{2}}{Y(z)}+\kappa_{1}, \end{aligned}$$
(1.3)
$$\begin{aligned}& Y(z+1)-Y(z)+Y(z-1)=\frac{\varsigma_{1}z+\varsigma _{2}}{Y(z)}+(-1)^{z}\kappa_{1}, \end{aligned}$$
(1.4)
$$\begin{aligned}& Y(z+1)+Y(z-1)=\frac{\varsigma_{1}z+\varsigma_{3}}{Y(z)}+\varsigma_{2}, \end{aligned}$$
(1.5)
$$\begin{aligned}& Y(z+1)+Y(z-1)=\frac{\varsigma_{1}z+\kappa_{1}}{Y(z)}+\frac{\varsigma _{2}}{Y^{2}(z)}, \end{aligned}$$
(1.6)
$$\begin{aligned}& Y(z+1)+Y(z-1)=\frac{(\varsigma_{1}z+\kappa_{1})Y(z)+\varsigma _{2}}{(-1)^{-z}-Y^{2}(z)}, \end{aligned}$$
(1.7)
$$\begin{aligned}& Y(z+1)+Y(z-1)=\frac{(\varsigma_{1}z+\kappa_{1})Y(z)+\varsigma _{2}}{1-Y^{2}(z)}, \end{aligned}$$
(1.8)
$$\begin{aligned}& Y(z+1)Y(z)+Y(z)Y(z-1)=p, \end{aligned}$$
(1.9)
$$\begin{aligned}& Y(z+1)+Y(z-1)=pY(z)+q, \end{aligned}$$
(1.10)

where \(\varsigma_{k}, \kappa_{k} \in S(Y)\) are arbitrary finite order periodic functions with period k.

Eqs. (1.3), (1.5), and (1.6) are known alternative forms of difference Painlevé I equation, Eq. (1.8) is a difference Painlevé II, and (1.9) and (1.10) are linear difference equations. Chen and Shon [2, 3] considered some value distribution problems of finite order meromorphic solutions of Eqs. (1.2), (1.5), (1.6), and (1.8). A natural question is: What is the result if we give q-difference analogues of (1.3) and (1.6)? For this question, we consider the following equations:

$$\begin{aligned}& Y(\varpi z)+Y(z)+Y\biggl(\frac{z}{\varpi}\biggr)=\frac{\xi z+o}{Y(z)}+v, \end{aligned}$$
(1.11)
$$\begin{aligned}& Y(\varpi z)+Y\biggl(\frac{z}{\varpi}\biggr)=\frac{\xi z+o}{Y(z)}+ \frac {v}{Y^{2}(z)}. \end{aligned}$$
(1.12)

Theorem 1.1

Let \(Y(z)\) be a transcendental meromorphic solution with zero order of Eq. (1.11) and ξ, o, v be three constants such that ξ, o cannot vanish simultaneously. Then

  1. (i)

    \(Y(z)\) has infinitely many poles.

  2. (ii)

    For any finite value B, if \(\xi\neq0\), then \(Y(z)-B\) has infinitely many zeros.

  3. (iii)

    If \(\xi=0\) and \(Y(z)-A\) has finite zeros, then A is a solution of \(3z^{2}-o-vz=0\).

We assume that the reader is familiar with the basic notions of Nevanlinna theory (see, e.g., [5, 6]).

Theorem 1.2

Let \(c\in\mathbb{C}\setminus\{0\}\), \(|\varpi|\neq1\), and \(V(z)=\frac {X(z)}{B(z)}\) be an irreducible rational function, where \(X(z)\) and \(B(z)\) are polynomials with \(\deg X(z)=x\) and \(\deg B(z)=b\).

  1. (i)

    Suppose that \(x\geq b\) and \(x-b\) is zero or an even number. If the equation

    $$ Y(\varpi z)+Y(z)+Y\biggl(\frac{z}{\varpi}\biggr)=\frac{V(z)}{Y(z)}+c $$
    (1.13)

    has an irreducible rational solution \(Y(z)=\frac{I(z)}{J(z)}\), where \(i(z)\) and \(J(z)\) are polynomials with \(\deg i(z)=i\) and \(\deg J(z)=j\), then

    $$ i-j=\frac{x-b}{2}. $$
  2. (ii)

    Suppose that \(x< b\). If Eq. (1.13) has an irreducible rational solution \(Y(z)=\frac{i(z)}{J(z)}\), then \(Y(z)\) satisfies one of the following two cases:

    1. (1)

      \(Y(z)=\frac{i(z)}{J(z)}=\frac{c}{3}+\frac{T(z)}{D(z)}\), where \(T(z)\) and \(D(z)\) are polynomials with \(\deg T(z)=t\) and \(\deg D(z)=d\), and \(b-x=d-t\).

    2. (2)

      \(i-j=x-b\).

Theorem 1.3

Let \(Y(z)\) be a transcendental meromorphic solution with zero order of Eq. (1.12) and ξ, o, v be three constants such that ξ, o cannot vanish simultaneously. Then

  1. (i)

    \(Y(z)\) has infinitely many poles.

  2. (ii)

    For any finite value B, if \(\xi\neq0\) and \(v\neq0\), then \(Y(z)-B\) has infinitely many zeros.

  3. (iii)

    If \(\xi=0\) and \(Y(z)-A\) has finite zeros, then A is a solution of \(2z^{2}-oz-v=0\).

Theorem 1.4

Let ξ, o, π be constants with \(\xi\pi\neq0\) and \(|\varpi|\neq 1\). Suppose that a rational function

$$ Y(z)=\frac{F(z)}{U(z)}=\frac{\mu_{0}z^{m}+\mu_{1}z^{m-1}+\cdots+\mu _{m}}{\lambda_{0}z^{n}+\lambda_{1}z^{n-1}+\cdots+\lambda_{n}} $$

is a solution of (1.12), where \(F(z)\) and \(U(z)\) are relatively prime polynomials, \(\mu_{0}\neq0\), \(\mu_{1},\ldots, \mu_{m}\), and \(\lambda _{0}\neq0\), \(\lambda_{1},\ldots, \lambda_{n}\) are constants. Then \(n=m+1\) and \(\mu_{0}=-\frac{\pi}{\xi}\lambda_{0}\).

2 Some lemmas

Lemma 2.1

([1])

Let \(Y(z)\) be a non-constant zero order meromorphic solution of

$$ Y(z)^{n}P(z, Y)=Q(z, Y), $$

where \(P(z, Y)\) and \(Q(z, Y)\) are ϖ-difference polynomials in \(Y(z)\). If the degree of \(Q(z, Y)\) as a polynomial in \(Y(z)\) and its ϖ-shifts is at most n, then

$$ m\bigl(r, P(z, Y)\bigr)=o\bigl(T(r, Y)\bigr) $$

on a set of logarithmic density 1.

Lemma 2.2

([1])

Let \(Y(z)\) be a non-constant zero order meromorphic solution of

$$ H(z, Y)=0, $$

where \(H(z,O)\) is a ϖ-difference polynomial in \(Y(z)\). If \(H(z, Y)\not\equiv0\) for a slowly moving target \(a(z)\), then

$$ m\biggl(r, \frac{1}{Y-a}\biggr)=o\bigl(T(r, Y)\bigr) $$

on a set of logarithmic density 1.

Lemma 2.3

([7])

Let \(Y(z)\) be a zero order meromorphic function, and \(\varpi\in\mathbb {C}\setminus\{0\}\). Then

$$\begin{aligned}& T\bigl(r, Y(\varpi z)\bigr)=\bigl(1+o(1)\bigr)T\bigl(r, Y(z)\bigr); \\& N\bigl(r, Y(\varpi z)\bigr)=\bigl(1+o(1)\bigr)N\bigl(r, Y(z)\bigr). \end{aligned}$$

3 Proof of Theorem 1.1

(i): Suppose that \(Y(z)\) is a zero order transcendental meromorphic solution of (1.11). By (1.11), we have

$$ Y(z)P(z, Y)=Q(z, Y), $$
(3.1)

where \(P(z, Y)=Y(\varpi z)+Y(z)+Y(\frac{z}{\varpi})\), \(Q(z, Y)=\xi z+o+vY(z)\). Lemma 2.1 implies that

$$ m\bigl(r, P(z, Y)\bigr)=o\bigl(T(r, Y)\bigr) $$
(3.2)

on a set of logarithmic density 1. By the Valiron–Mohon’ko theorem, we obtain that

$$ T\biggl(r, Y(\varpi z)+Y(z)+Y\biggl(\frac{z}{\varpi}\biggr)\biggr)=T(r, Y)+S(r, Y). $$
(3.3)

By Lemma 2.3, we obtain

$$ \begin{aligned}[b] N\biggl(r, Y(\varpi z)+Y(z)+Y\biggl(\frac{z}{\varpi}\biggr)\biggr)&\leq N \bigl(r, Y(\varpi z)\bigr)+N(r, Y)+N\biggl(r, Y\biggl(\frac{z}{\varpi}\biggr) \biggr)\\ &=3\bigl(1+o(1)\bigr)N(r, Y). \end{aligned} $$
(3.4)

(3.2), (3.3), and (3.4) imply that

$$ T(r, Y)\leq3\bigl(1+o(1)\bigr)N(r, Y)+S(r, Y) $$
(3.5)

on a set of logarithmic density 1. Hence, \(Y(z)\) has infinitely many poles.

(ii): For any finite value B, and let

$$ Y_{1}(z)=Y(z)-B. $$

Substituting \(Y_{1}(z)=Y(z)-B\) into (3.1), we obtain

$$ \bigl(Y_{1}(z)+B\bigr) \biggl(Y_{1}(\varpi z)+Y_{1}(z)+Y_{1}\biggl(\frac{z}{\varpi}\biggr)+3B\biggr)= \xi z+o+v\bigl(Y_{1}(z)+B\bigr). $$

Let

$$ P\bigl(z, Y_{1}(z)\bigr)=\bigl(Y_{1}(z)+B\bigr) \biggl(Y_{1}(\varpi z)+Y_{1}(z)+Y_{1}\biggl( \frac{z}{\varpi }\biggr)+3B\biggr)-\xi z-o-v\bigl(Y_{1}(z)+B \bigr). $$
(3.6)

If \(\xi\neq0\), by (3.6), we have \(P(z, 0)=3B^{2}-\xi z-o-vB\not\equiv0\). Lemma 2.2 implies that

$$ m\biggl(r, \frac{1}{Y_{1}}\biggr)=o\bigl(T(r, Y_{1})\bigr) $$

on a set of logarithmic density 1. Hence

$$ N\biggl(r, \frac{1}{Y-B}\biggr)=N\biggl(r, \frac{1}{Y_{1}}\biggr)=T(r, Y_{1}) \bigl(1+o(1)\bigr)=T(r, Y) \bigl(1+o(1)\bigr) $$

on a set of logarithmic density 1. Hence, \(Y(z)\) has infinitely many finite values.

(iii): If \(\xi=0\) and B is not a solution of \(3z^{2}-o-vz=0\), then \(P(z, 0)=3B^{2}-o-vB\not\equiv0\). Using a similar method as above, we can obtain that

$$ N\biggl(r, \frac{1}{Y-B}\biggr)=T(r, Y) \bigl(1+o(1)\bigr), $$

which contradicts the assumption of Theorem 1.1, hence the conclusion holds.

4 Proof of Theorem 1.2

By (1.13) and \(Y(z)=\frac{I(z)}{J(z)}\), we have

$$ \begin{gathered}[b] B(z)I(z)I(\varpi z)J(z)J\biggl(\frac{z}{\varpi} \biggr)+B(z)I^{2}(z)J\biggl(\frac {z}{\varpi}\biggr)J(\varpi z) +B(z)I(z)I\biggl(\frac{z}{\varpi}\biggr)J(\varpi z)J(z) \\ \quad {}-c B(z)I(z)J(\varpi z)J\biggl(\frac{z}{\varpi}\biggr)J(z)=X(z)J(\varpi z)J\biggl(\frac {z}{\varpi}\biggr)J^{2}(z). \end{gathered} $$
(4.1)

Obviously, we have

$$\begin{aligned}& \begin{aligned}[b] &\deg\biggl(B(z)I(z)I(\varpi z)J(z)J\biggl(\frac{z}{\varpi} \biggr)+B(z)I^{2}(z)J\biggl(\frac {z}{\varpi}\biggr)J(\varpi z) \\ &\quad{}+B(z)I(z)I\biggl(\frac{z}{\varpi}\biggr)J(\varpi z)J(z)\biggr) =b+2i+2j; \end{aligned} \end{aligned}$$
(4.2)
$$\begin{aligned}& \deg\biggl(c B(z)I(z)J(\varpi z)J\biggl(\frac{z}{\varpi}\biggr)J(z) \biggr)=b+i+3j; \end{aligned}$$
(4.3)
$$\begin{aligned}& \deg\biggl(X(z)J(\varpi z)J\biggl(\frac{z}{\varpi}\biggr)J^{2}(z) \biggr)=x+4j. \end{aligned}$$
(4.4)

(i): Suppose first that \(x>b\) and \(x-b\) is an even number. If \(\deg i(z)=i< j=\deg J(z)\), then (4.1)–(4.4) imply that \(x+4j=b+i+3j\), that is, \(0>i-j=x-b>0\). This is impossible.

If \(i=j\), then we use a similar method as above, we can obtain \(0< x-b=i-j=0\), this is impossible. So, \(i>j\). By (4.1), we have \(x+4j=b+2i+2j\), that is, \(i-j=\frac {x-b}{2}\).

(ii): Suppose that \(x< b\). If \(i>j\), then (4.1)–(4.4) yield that \(x+4j=b+2i+2j\), that is, \(0>x-b=2(i-j)>0\), which is a contradiction.

If \(i=j\), then we can assume

$$ Y(z)=\iota_{0}+\frac{T(z)}{D(z)}, $$
(4.5)

where \(\iota_{0} \neq0\), \(T(z)\) and \(D(z)\) are polynomials, and \(\deg T(z)=t<\deg D(z)=d\). Thus, as \(z\rightarrow\infty\), (1.13) and (4.5) imply that

$$ 3\iota_{0}\bigl(1+o(1)\bigr)=\frac{o(1)}{\iota_{0}(1+o(1))}+c, $$
(4.6)

which implies \(\iota_{0}=\frac{c}{3}\). Hence,

$$ Y(z)=\frac{c}{3}+\frac{T(z)}{D(z)}. $$
(4.7)

Substituting (4.7) into (1.13), we get

$$\begin{gathered} B(z) \biggl(\frac{c}{3} D(z)+T(z)\biggr) \biggl(T(z)D( \varpi z)D\biggl(\frac{z}{\varpi }\biggr)+T(\varpi z)D(z)D\biggl( \frac{z}{\varpi}\biggr) \\ \quad{}+T\biggl(\frac{z}{\varpi}\biggr)D(z)D(\varpi z)\biggr) =X(z)D^{2}(z)D(\varpi z)D\biggl(\frac{z}{\varpi}\biggr). \end{gathered} $$

Obviously,

$$\begin{gathered} \deg\biggl[B(z) \biggl(\frac{c}{3} D(z)+T(z)\biggr) \biggl(T(z)D(\varpi z)D\biggl(\frac{z}{\varpi }\biggr)+T(\varpi z)D(z)D\biggl( \frac{z}{\varpi}\biggr)\\ \quad {}+T\biggl(\frac{z}{\varpi}\biggr)D(z)D(\varpi z)\biggr) \biggr]=3d+b+t; \\ \deg X(z)D^{2}(z)D(\varpi z)D\biggl(\frac{z}{\varpi}\biggr)=x+4d. \end{gathered} $$

Hence, \(b-x=d-t\).

If \(i< j\), by \(i< j\), \(x< b\), (4.1)–(4.4), then we have

$$ i-j=x-b. $$

5 Proof of Theorem 1.3

(i). Suppose that \(Y(z)\) is a zero order transcendental meromorphic solution of (1.12). By (1.12), we have

$$ Y^{2}(z) \biggl(Y(\varpi z)+Y\biggl(\frac{z}{\varpi}\biggr)\biggr)=( \xi z+o)Y+v. $$
(5.1)

Lemma 2.1 implies that

$$ m\biggl(r, Y(\varpi z)+Y\biggl(\frac{z}{\varpi}\biggr)\biggr)=o\bigl(T(r, Y) \bigr) $$
(5.2)

on a set of logarithmic density 1. By the Valiron–Mohon’ko theorem, we get that

$$ T\biggl(r, Y(\varpi z)+Y\biggl(\frac{z}{\varpi}\biggr)\biggr)=T(r, Y)+S(r, Y). $$
(5.3)

By Lemma 2.3, we obtain

$$ N\biggl(r, Y(\varpi z)+Y\biggl(\frac{z}{\varpi}\biggr)\biggr)\leq N\bigl(r, Y( \varpi z)\bigr)+N\biggl(r, Y\biggl(\frac {z}{\varpi}\biggr)\biggr)=2\bigl(1+o(1) \bigr)N(r, Y). $$
(5.4)

(5.2), (5.3), and (5.4) yield that

$$ T(r, Y)\leq2\bigl(1+o(1)\bigr)N(r, Y)+S(r, Y) $$
(5.5)

on a set of logarithmic density 1. Hence, \(Y(z)\) has infinitely many poles.

(ii). For any finite value B, let

$$ Y_{1}(z)=Y(z)-B. $$

Substituting \(Y_{1}(z)=Y(z)-B\) into (5.1), we obtain

$$ \bigl(Y_{1}(z)+B\bigr)^{2}\biggl(Y_{1}(\varpi z)+Y_{1}\biggl(\frac{z}{\varpi}\biggr)+2B\biggr)=(\xi z+o) \bigl(Y_{1}(z)+B\bigr)+v. $$

Let

$$ P\bigl(z, Y_{1}(z)\bigr)=\bigl(Y_{1}(z)+B \bigr)^{2}\biggl(Y(\varpi z)+Y\biggl(\frac{z}{\varpi}\biggr)+2B \biggr)-(\xi z+o) \bigl(Y_{1}(z)+B\bigr)-v. $$
(5.6)

By (5.6), we have \(P(z, 0)=2B^{2}-(\xi z+o)B-\pi\).

If \(B=0\) and \(\pi\neq0\), then we obtain that \(P(z, 0)=-v\not\equiv0\).

If \(B\neq0\), then we have \(P(z, 0)=2B^{2}-(\xi z+o)B-v\not\equiv0\) since \(\xi\neq0\). Using a method similar to Theorem 1.1, we can obtain that

$$ N\biggl(r, \frac{1}{Y-A}\biggr)=N\biggl(r, \frac{1}{Y_{1}}\biggr)=T(r, Y_{1}) \bigl(1+o(1)\bigr)=T(r, Y) \bigl(1+o(1)\bigr) $$

on a set of logarithmic density 1. Hence, \(Y(z)\) has infinitely many finite values.

(iii). If \(\xi=0\) and A is not a solution of \(2z^{2}-oz-\pi=0\), then using a method similar to Theorem 1.1, we also obtain that

$$ N\biggl(r, \frac{1}{Y-A}\biggr)=T(r, Y) \bigl(1+o(1)\bigr), $$

which contradicts the assumption of Theorem 1.3, hence the conclusion holds.

6 Proof of Theorem 1.4

Assume that (1.12) has a rational solution \(Y(z)\) and has poles \(t_{1}, t_{2},\ldots,t_{k}\). Next, let

$$ \frac{c_{j\lambda_{j}}}{(z-t_{j})^{\lambda_{j}}}+\cdots+\frac {c_{j_{1}}}{(z-t_{j})}\quad (j=1,\ldots,k) $$

be the principal parts of Y at \(t_{j}\), respectively, where \(c_{j\lambda _{j}},\ldots,c_{j1}\) are constants, \(c_{j\lambda_{j}}\neq0\). Hence

$$ Y(z)=\frac{F(z)}{U(z)}=\sum^{k}_{j=1} \biggl[\frac{c_{j\lambda _{j}}}{(z-t_{j})^{\lambda_{j}}}+\cdots+\frac{c_{j_{1}}}{(z-t_{j})}\biggr]+\tau_{0}+ \tau _{1}z+\cdots+\tau_{s}z^{s}, $$
(6.1)

where \(\tau_{0},\ldots,\tau_{s}\) are constants. Assume that \(\tau_{s}\neq0\) (\(s\geq1\)). When \(z\rightarrow\infty\),

$$\begin{aligned}& Y(z)=\tau_{s} z^{s}\bigl(1+o(1)\bigr), \qquad Y(\varpi z)= \varpi^{s}\tau _{s}z^{s}\bigl(1+o(1) \bigr), \end{aligned}$$
(6.2)
$$\begin{aligned}& Y\biggl(\frac{z}{\varpi}\biggr)=\frac{1}{\varpi^{s}}\tau_{s}z^{s} \bigl(1+o(1)\bigr). \end{aligned}$$
(6.3)

By (1.12), we have

$$ Y^{2}(z) \biggl(Y(\varpi z)+Y\biggl(\frac{z}{\varpi}\biggr)\biggr)=( \xi z+o)Y+v. $$
(6.4)

When \(z\rightarrow\infty\), (6.2), (6.3), and (6.4) imply that

$$ \biggl(\varpi^{s}+\frac{1}{\varpi^{s}}\biggr)\tau_{s}^{3} z^{3s}\bigl(1+o(1)\bigr)=(\xi z+o) \bigl(\tau_{s} z^{s}\bigl(1+o(1)\bigr)\bigr)+v, $$

which is a contradiction since \(\tau_{s}\neq0 \) and \(s\geq1\). Assume that \(\tau_{0}\neq0\), as \(z\rightarrow\infty\),

$$\begin{aligned}& Y(z)=\tau_{0} \bigl(1+o(1)\bigr),\qquad Y(\varpi z)= \tau_{0}\bigl(1+o(1)\bigr), \end{aligned}$$
(6.5)
$$\begin{aligned}& Y\biggl(\frac{z}{\varpi}\biggr)=\tau_{0}\bigl(1+o(1) \bigr). \end{aligned}$$
(6.6)

By (6.4) together with (6.5) and (6.6), we obtain that

$$ (\xi z+o) \bigl(\tau_{0}\bigl(1+o(1)\bigr)\bigr)=2 \tau_{s}^{3}-\pi. $$

This is impossible since \(\xi\neq0\) and \(\tau_{0}\neq0\). Hence

$$ Y(z)=\frac{F(z)}{U(z)}, $$
(6.7)

where \(\deg F(z)=m<\deg U(z)=n\). Equation (6.7) and (1.12) imply that

$$\begin{aligned} &F^{2}(z)F(\varpi z)U\biggl(\frac{z}{\varpi}\biggr)+F^{2}(z)F \biggl(\frac{z}{\varpi }\biggr)U(\varpi z)\\ &\quad =(\xi z+o)F(z)U(z)U(\varpi z)U\biggl( \frac{z}{\varpi}\biggr) +vU^{2}(z)U(\varpi z)U\biggl(\frac{z}{\varpi} \biggr). \end{aligned} $$

Hence we have \(n=m+1\). By (1.12) and \(n=m+1\), we obtain

$$ \frac{F(\varpi z)}{U(\varpi z)}+\frac{F(\frac{z}{\varpi})}{U(\frac {z}{\varpi})}=\frac{(\xi z+o)F(z)U(z)+vU^{2}(z)}{F^{2}(z)}. $$

Since as \(z\rightarrow\infty\), we have

$$ \frac{F(\varpi z)}{U(\varpi z)}+\frac{F(\frac{z}{\varpi})}{U(\frac {z}{\varpi})}\rightarrow0; $$

and

$$ \frac{(\xi z+o)F(z)U(z)+vU^{2}(z)}{F^{2}(z)}=\frac{(\xi\mu_{0}\lambda _{0}+v\lambda_{0}^{2})z^{2n}(1+o(1))}{\mu_{0}^{2}z^{2n-2}(1+o(1))}, $$

we obtain \(\xi\mu_{0}\lambda_{0}+\pi\lambda_{0}^{2}=0\).