Advertisement

Some characterizations of disjoint topological transitivity on Orlicz spaces

  • Chung-Chuan Chen
  • Wei-Shih Du
Open Access
Research
  • 290 Downloads

Abstract

In this paper, we study the disjointness of topological transitivity on Orlicz spaces endowed with the Orlicz norm. We first give the characterization for weighted translations to be topologically transitive. Based on this, a sufficient condition and a necessary condition for powers of weighted translations to be disjoint topologically transitive are obtained as well.

Keywords

Topological transitivity Disjoint topological transitivity Weighted translation Orlicz space Locally compact group 

MSC

54H20 46E30 47A16 

1 Introduction

In [1, 2], we gave sufficient and necessary conditions for weighted translations to be topologically transitive and disjoint topologically transitive on the Lebesgue space of locally compact groups, which generalizes some results about weighted shifts on the discrete group \(\mathbb{Z}\) in [3, 4], respectively. We note that the investigation of linear dynamics on locally compact groups has attracted a lot of attention. Indeed, let G be a locally compact group. The disjoint hypercyclicity of weighted translations on \(L^{p}(G)\) was studied in [5]. The existence of transitive weighted translations on \(L^{p}(G)\) is obtained in [6]. Also, Abakumov and Kuznetsova in [7] focused on the density of translates in the weighted Lebesgue space \(L_{w}^{p}(G) \) where w is a weight on G. Recently, Azimi and Akbarbaglu in [8] extended the work of [2] from the Lebesgue space \(L^{p}(G)\) to the Orlicz space \(L^{\Phi}(G)\) endowed with the Luxemburg norm, where Φ is a Young function. It is well known that the Orlicz space is a generalization of the usual Lebesgue space. Inspired by these, we initial the study of linear dynamics in the setting of the Orlicz space \(L^{\Phi}(G)\), but with respect to the Orlicz norm. Although the Orlicz norm and the Luxemburg norm are equivalent, they deduce the totally different descriptions of topological transitivity in [8, Theorem 2.3] and Theorem 2.1 in Sect. 2 by applying different approaches and methods. In fact, we also investigate deeper dynamical notions, namely, disjoint topological transitivity and disjoint topological mixing in Sect. 3, which were not studied in [8].

A bounded linear operator T on a separable Banach space X is said to be topologically transitive if, given two non-empty open sets \(U,V\subset X\), there exists \(n\in\mathbb{N}\) such that \(T^{n}(U)\cap V\neq \emptyset\). If \(T^{n}(U)\cap V\neq\emptyset\) from some n onwards, then T is topologically mixing. It should be noted [9] that topological transitivity and hypercyclicity are equivalent on separable Banach spaces. The latter notion arises from the invariant subset problem in analysis. An operator T is called hypercyclic if there is \(x\in X\) such that its orbit under T, denoted by \(Orb(T,x):=\{T^{n}x: n\in \mathbb{N}\} \), is dense in X. Hypercyclicity and linear dynamics have been studied intensely. We refer to these classic books [9, 10, 11] on this subject. About one decade ago, Bernal-González, Bès and Peris introduced new notions of linear dynamics, namely, disjoint topological transitivity and disjoint hypercyclicity in [12] and [3], respectively. Since then, disjoint topological transitivity and disjoint hypercyclicity were studied by many authors [11, 13, 14, 15, 16, 17, 18]. These new notions, disjoint topological transitivity and disjoint hypercyclicity, are kinds of generalizations of topological transitivity and hypercyclicity, respectively. We first recall some definitions of disjointness [3, 12] for further discussion.

Definition 1.1

Given \(N\geq2\), the operators \(T_{1},T_{2},\ldots,T_{N}\) acting on a separable Banach space X are disjoint hypercyclic, or diagonally hypercyclic (in short, d-hypercyclic) if there is some vector \((x,x,\ldots,x)\) in the diagonal of \(X^{N}=X\times X\times \cdots\times X\) such that
$$ \bigl\{ (x,x,\ldots,x),(T_{1}x,T_{2}x,\ldots,T_{N}x), \bigl(T^{2}_{1}x,T^{2}_{2}x,\ldots,T^{2}_{N}x\bigr),\ldots\bigr\} $$
is dense in \(X^{N}\); if this is the case, then we say \(x\in X\) is a d-hypercyclic vector associated to the operators \(T_{1},T_{2},\ldots,T_{N} \).

For topological dynamics, several new notions were given accordingly [3] as follows.

Definition 1.2

Given \(N\geq2\), the operators \(T_{1},T_{2},\ldots,T_{N}\) on a separable Banach space X are disjoint topologically transitive or diagonally topologically transitive (in short, d-topologically transitive) if, given non-empty open sets \(U,V_{1},\ldots,V_{N}\subset X\), there is some \(n\in\mathbb{N}\) such that
$$ \emptyset\neq U\cap T_{1}^{-n}(V_{1})\cap T_{2}^{-n}(V_{2})\cap\cdots\cap T_{L}^{-n}(V_{N}). $$
If the above condition is satisfied from some n onwards, then \(T_{1},T_{2},\ldots,T_{N}\) are called disjoint topologically mixing (in short, d-topologically mixing).
In this note, the characterizations for weighted translation operators on the Orlicz space to be topologically transitive and disjoint topologically transitive will be demonstrated. We introduce the Orlicz space briefly for further study. It should be noted the Orlicz space is defined by a Young function which highly relies on the Young inequality. Indeed, a continuous, even and convex function \(\Phi:\mathbb{R}\rightarrow\mathbb{R}\) is called a Young function if it satisfies \(\Phi(0)=0\), \(\Phi(t)>0\) for \(t>0\), and \(\lim_{t\rightarrow\infty }\Phi(t)=\infty\). For a Young function Φ, the complementary function Ψ of Φ is given by
$$ \Psi(y)=\sup\bigl\{ x \vert y \vert-\Phi(x):x\geq0\bigr\} \quad (y\in \mathbb{R}), $$
which is also a Young function. If Ψ is the complementary function Φ, then Φ is the complementary function Ψ, and they both satisfy the Young inequality,
$$ xy\leq\Phi(x)+\Psi(y)\quad (x,y\geq0). $$
Let G be a locally compact group with identity e and a right Haar measure λ. Then the Orlicz space\(L^{\Phi}(G)\) is defined by
$$ L^{\Phi}(G)= \biggl\{ f:G\rightarrow\mathbb{C}: \int_{G}\Phi\bigl(\alpha\vert f \vert\bigr)\,d\lambda< \infty\text{ for some $\alpha>0$} \biggr\} , $$
where f is a Borel measurable function. Moreover, the Orlicz space is a Banach space under the Orlicz norm defined for \(f\in L^{\Phi}(G)\) by
$$ \Vert f \Vert _{\Phi}=\sup\biggl\{ \int_{G} \vert fv \vert\,d\lambda: \int_{G}\Psi\bigl( \vert v \vert\bigr)\,d\lambda\leq1 \biggr\} . $$
One can also define the Luxemburg norm on \(L^{\Phi}(G)\) by
$$ N_{\Phi}(f)=\inf\biggl\{ k>0: \int_{G}\Phi\biggl(\frac{ \vert f \vert }{k} \biggr)\,d\lambda \leq1\biggr\} . $$
It is well known that these two norms above are equivalent.

We note that the Lebesgue space is a special case of the Orlicz space. The interesting properties and structures of Orlicz spaces have been investigated intensely over the last several decades. For instance, the properties \((T_{L^{\Phi}})\) and \((F_{L^{\Phi}})\) for Orlicz spaces \(L^{\Phi}\) were studied by Tanaka in [19] recently. In [20], Piaggio also considered Orlicz spaces and the large scale geometry of Heintze groups. Hence it is significant to tackle hypercyclicity and linear dynamics on Orlicz spaces. For more discussion and recent work as regards Orlicz spaces, see [21, 22, 23].

We note that a Banach space admits a hypercyclic operator if, and only if, it is separable and infinite-dimensional [24, 25]. Hence we assume that G is second countable and Φ is \(\Delta_{2}\)-regular in this paper. A Young function is said to be \(\Delta_{2}\)-regular in [23] if there exist a constant \(M>0\) and \(t_{0}>0\) such that \(\Phi(2t)\leq M\Phi(t)\) for \(t\geq t_{0}\) when G is compact, and \(\Phi(2t)\leq M\Phi(t)\) for all \(t>0 \) when G is noncompact. For example, the Young functions Φ given by
$$ \Phi(t)=\frac{ \vert t \vert ^{p}}{p}\quad (1\leq p< \infty)\quad \mbox{and}\quad \Phi(t)= \vert t \vert^{\alpha}\bigl(1+ \bigl\vert \log\vert t \vert \bigr\vert \bigr)\quad (\alpha>1) $$
are both \(\Delta_{2}\)-regular in [8, 23]. If Φ is \(\Delta_{2}\)-regular, then the space \(C_{c}(G)\) of all continuous functions on G with compact support is dense in \(L^{\Phi}(G)\), and the dual space \((L^{\Phi}(G), \Vert \cdot \Vert _{\Phi})\) is \((L^{\Psi}(G),N_{\Psi}(\cdot))\).
A bounded continuous function \(w:G \rightarrow(0,\infty)\) is called a weight on G. Let \(a \in G\) and let \(\delta_{a}\) be the unit point mass at a. A weighted translation on G is a weighted convolution operator \(T_{a,w}: L^{\Phi}(G)\longrightarrow L^{\Phi}(G)\) defined by
$$ T_{a,w}(f)= wT_{a}(f)\quad \bigl(f \in L^{\Phi}(G)\bigr), $$
where w is a weight on G and \(T_{a}(f)=f*\delta_{a}\in L^{\Phi}(G)\) is the convolution:
$$ (f*\delta_{a}) (x)= \int_{y\in G} f\bigl(xy^{-1}\bigr)\delta_{a}(y) = f\bigl(xa^{-1}\bigr)\quad (x\in G). $$
If \(w^{-1}\in L^{\infty}(G)\), then we can define a self-map \(S_{a,w}\) on \(L^{\Phi}(G)\) by
$$ S_{a,w}(h) = \frac{h}{w}* \delta_{a^{-1}}\quad \bigl(h \in L^{\Phi}(G)\bigr) $$
so that
$$ T_{a,w}S_{a,w}(h) = h \quad\bigl(h \in L^{\Phi}(G)\bigr). $$
In what follows, we assume \(w,w^{-1}\in L^{\infty}(G)\).

In Sect. 2, we will characterize topological transitivity of weighted translations on \(L^{\Phi}(G)\) in terms of the weight, the Haar measure and the group element. Applying similar arguments, in Sect. 3, we will obtain a sufficient condition and a necessary condition for powers of weighted translations to be disjoint topologically transitive. In particular, the Minkowski inequality and some estimates with inequalities play important roles in demonstrating the results in the two sections.

2 Topological transitivity

Now we are ready to give the result of topological transitivity. Applying the same argument, the characterization for topological mixing follows immediately.

Theorem 2.1

LetGbe a locally compact group and let\(a\in G\). Letwbe a weight onG, and let Φ be a Young function. Let\(T_{a,w}\)be a weighted translation on\(L^{\Phi}(G)\). Then the following conditions are equivalent.
  1. (i)

    \(T_{a,w}\)is topologically transitive on\(L^{\Phi}(G)\).

     
  2. (ii)
    For each compact subsetKofGwith\(\lambda(K)>0\), there exist a sequence of Borel sets\((E_{k})\)inKand a strictly increasing sequence\((n_{k})\subset\mathbb{N}\)such that
    $$ \lim_{k \rightarrow\infty}\sup_{v\in\Omega} \int_{K\setminus{E_{k}}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)=0, $$
    and the two sequences
    $$ \varphi_{n}:=\prod_{j=1}^{n}w \ast\delta_{a^{-1}}^{j}\quad\textit{and} \quad {\widetilde{\varphi}_{n}}:= \Biggl(\prod_{j=0}^{n-1}w \ast\delta_{a}^{j}\Biggr)^{-1} $$
    satisfy
    $$ \lim_{k \rightarrow\infty}\sup_{v\in \Omega} \int_{E_{k}}\varphi_{n_{k}}(x) \bigl\vert v \bigl(xa^{n_{k}}\bigr) \bigr\vert \,d\lambda(x)=0 $$
    and
    $$ \lim_{k \rightarrow\infty}\sup_{v\in\Omega} \int_{E_{k}}\widetilde{\varphi}_{n_{k}}(x) \bigl\vert v\bigl(xa^{-n_{k}}\bigr) \bigr\vert \,d\lambda(x)=0, $$
    where Ω is the set of all Borel functionsvonGsatisfying\(\int_{G} \Psi( \vert v \vert )\,d\lambda\leq1\).
     

Proof

(ii) ⇒ (i). Suppose that U and V are non-empty open subsets of \(L^{\Phi}(G)\). Since the space \(C_{c}(G)\) of all continuous functions on G with compact support is dense in \(L^{\Phi}(G)\), there are \(f,g\in C_{c}(G)\) such that \(f\in U\) and \(g\in V\). Let K be the union of supports of f and g. Given \(\varepsilon>0\), by condition (ii), there exist \((E_{k})\) and \((n_{k})\) such that, for some k, we have
$$\begin{aligned} &\Vert f \Vert _{\infty}\cdot\sup_{v\in\Omega} \int_{K\setminus{E_{k}}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)< \varepsilon, \\ &\Vert g \Vert _{\infty}\cdot\sup_{v\in\Omega} \int_{K\setminus{E_{k}}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)< \varepsilon, \\ &\Vert f \Vert _{\infty}\cdot\sup_{v\in \Omega} \int_{E_{k}}\varphi_{n_{k}}(x) \bigl\vert v \bigl(xa^{n_{k}}\bigr) \bigr\vert \,d\lambda(x)< \varepsilon \end{aligned}$$
and
$$ \Vert g \Vert _{\infty}\cdot\sup_{v\in\Omega} \int_{E_{k}}\widetilde{\varphi}_{n_{k}}(x) \bigl\vert v\bigl(xa^{-n_{k}}\bigr) \bigr\vert \,d\lambda (x)< \varepsilon. $$
Therefore
$$\begin{aligned} \bigl\Vert T_{a,w}^{n_{k}}(f\chi_{E_{k}}) \bigr\Vert _{\Phi}&=\sup_{v\in\Omega}\int_{G} \bigl\vert T_{a,w}^{n_{k}}(f \chi_{E_{k}}) (x)v(x) \bigr\vert \,d\lambda(x) \\ &=\sup_{v\in\Omega} \int_{G} \bigl\vert w(x)w\bigl(xa^{-1}\bigr)\cdots w\bigl(xa^{-n_{k}+1}\bigr)f\bigl(xa^{-n_{k}}\bigr)\chi_{E_{k}} \bigl(xa^{-n_{k}}\bigr)v(x) \bigr\vert \,d\lambda(x) \\ &=\sup_{v\in\Omega} \int_{G} \bigl\vert w\bigl(xa^{n_{k}}\bigr)w \bigl(xa^{n_{k}-1}\bigr)\cdots w(xa)f(x)\chi_{E_{k}}(x)v \bigl(xa^{n_{k}}\bigr) \bigr\vert \,d\lambda(x) \\ &\leq \Vert f \Vert _{\infty}\cdot\sup_{v\in\Omega} \int_{E_{k}}\varphi_{n_{k}}(x) \bigl\vert v \bigl(xa^{n_{k}}\bigr) \bigr\vert \,d\lambda(x)< \varepsilon. \end{aligned}$$
Likewise,
$$\begin{aligned} \bigl\Vert S_{a,w}^{n_{k}}(g\chi_{E_{k}}) \bigr\Vert _{\Phi}&=\sup_{v\in\Omega}\int_{G} \bigl\vert S_{a,w}^{n_{k}}(g \chi_{E_{k}}) (x)v(x) \bigr\vert \,d\lambda(x) \\ &=\sup_{v\in\Omega} \int_{G}\frac{1}{ \vert w(xa)w(xa^{2})\cdots w(xa^{n_{k}}) \vert } \bigl\vert g\bigl(xa^{n_{k}} \bigr)\chi_{E_{k}}\bigl(xa^{n_{k}}\bigr)v(x) \bigr\vert \,d \lambda(x) \\ &=\sup_{v\in\Omega} \int_{G}\frac{1}{ \vert w(xa^{-n_{k}+1})w(xa^{-n_{k}+2})\cdots w(x) \vert } \bigl\vert g(x) \chi_{E_{k}}(x)v\bigl(xa^{-n_{k}}\bigr) \bigr\vert \,d\lambda(x) \\ &\leq \Vert g \Vert _{\infty}\cdot\sup_{v\in\Omega} \int_{E_{k}}\widetilde{\varphi}_{n_{k}}(x) \bigl\vert v\bigl(xa^{-n_{k}}\bigr) \bigr\vert \,d\lambda (x)< \varepsilon. \end{aligned}$$
Also,
$$\begin{aligned} \Vert f-f\chi_{E_{k}} \Vert _{\Phi}&=\sup _{v\in\Omega} \int_{G} \bigl\vert f(x)-f(x)\chi_{E_{k}}(x) \bigr\vert \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &=\sup_{v\in\Omega} \int_{G} \bigl\vert f(x)\chi_{K\setminus E_{k}}(x) \bigr\vert \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &=\sup_{v\in\Omega} \int_{K\setminus E_{k}} \bigl\vert f(x) \bigr\vert \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &\leq \Vert f \Vert _{\infty}\cdot \int_{K\setminus E_{k}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)< \varepsilon. \end{aligned}$$
Similarly,
$$ \Vert g-g\chi_{E_{k}} \Vert _{\Phi} \leq \Vert g \Vert _{\infty}\cdot \int_{K\setminus E_{k}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)< \varepsilon. $$
Now let
$$ v_{k}=f\chi_{E_{k}}+S_{a,w}^{n_{k}}(g \chi_{E_{k}}). $$
Then, by the Minkowski inequality,
$$ \Vert v_{k}-f \Vert _{\Phi}\leq \Vert f \chi_{E_{k}}-f \Vert _{\Phi}+ \bigl\Vert S_{a,w}^{n_{k}}(g \chi_{E_{k}}) \bigr\Vert _{\Phi}< 2\varepsilon $$
and
$$ \bigl\Vert T_{a,w}^{n_{k}}v_{k}-g \bigr\Vert _{\Phi}\leq\bigl\Vert T_{a,w}^{n_{k}}(f \chi_{E_{k}}) \bigr\Vert _{\Phi}+ \Vert g\chi_{E_{k}}-g \Vert _{\Phi}< 2\varepsilon, $$
which implies
$$ T_{a,w}^{n_{k}}(U)\cap V\neq\emptyset $$
for some k. Therefore \(T_{a,w}\) is topologically transitive.
(i) ⇒ (ii). Let \(\varepsilon\in(0,1)\). Let K be a compact subset of G, and let \(\chi_{K}\) be the characteristic function of K. By the assumption of topological transitivity, there exist \(f\in L^{\Phi}(G)\) and some \(m\in\mathbb{N}\) such that
$$ \Vert f-\chi_{K} \Vert _{\Phi} < \varepsilon^{2}\quad \mbox{and}\quad \bigl\Vert T_{a,w}^{m}f+\chi_{K} \bigr\Vert _{\Phi}< \varepsilon^{2}. $$
Without loss of generality, we may assume that f is real-valued by the continuity of the mapping \(h\in L^{\Phi}(G,\mathbb{C})\mapsto \operatorname{Re} h\in L^{\Phi}(G,\mathbb{R})\) and the fact that \(T_{a,w}\) commutes with it. Also, the mapping \(h\in L^{\Phi}(G,\mathbb{R})\mapsto h^{+}\in L^{\Phi}(G,\mathbb{R})\) commutes with \(T_{a,w}\) where \(h^{+}=\max\{0,h\}\). Therefore, for a Borel set \(F\subset G\), we have
$$\begin{aligned} \bigl\Vert \bigl(T_{a,w}^{m}f^{+}\bigr)\chi_{F} \bigr\Vert _{\Phi}&\leq \bigl\Vert \bigl(T_{a,w}^{m}f \bigr)^{+} \bigr\Vert _{\Phi}= \bigl\Vert \bigl(T_{a,w}^{m}f-(- \chi_{K})+(-\chi_{K})\bigr)^{+} \bigr\Vert _{\Phi}\\ &\leq \bigl\Vert \bigl(T_{a,w}^{m}f-(- \chi_{K})\bigr)^{+} \bigr\Vert _{\Phi}+ \bigl\Vert (- \chi_{K})^{+} \bigr\Vert _{\Phi}\\ &= \bigl\Vert \bigl(T_{a,w}^{m}f-(-\chi_{K}) \bigr)^{+} \bigr\Vert _{\Phi}\leq\bigl\Vert T_{a,w}^{m}f+ \chi_{K} \bigr\Vert _{\Phi}< \varepsilon^{2} \end{aligned}$$
and
$$\begin{aligned} \bigl\Vert f^{-}\chi_{F} \bigr\Vert _{\Phi}&\leq \bigl\Vert f^{-} \bigr\Vert _{\Phi}= \bigl\Vert (f-\chi_{K}+ \chi_{K})^{-} \bigr\Vert _{\Phi}\\ &\leq \bigl\Vert (f-\chi_{K})^{-} \bigr\Vert _{\Phi}+ \bigl\Vert \chi_{K}^{-} \bigr\Vert _{\Phi}\\ &= \Vert f-\chi_{K} \Vert _{\Phi}< \varepsilon^{2}, \end{aligned}$$
where \(f^{-}=\max\{0,-f\}\).
Let \(A=\{x\in K: \vert f(x)-1 \vert \geq\varepsilon\}\). Then
$$ f(x)>1-\varepsilon>0 \quad (x\in K\setminus A)\quad \mbox{and} \quad\sup_{v\in \Omega} \int_{A} \bigl\vert v(x) \bigr\vert \,d\lambda(x)< \varepsilon $$
by
$$\begin{aligned} \varepsilon^{2} &> \Vert f-\chi_{K} \Vert _{\Phi} \\ &= \sup_{v\in\Omega} \int_{G} \bigl\vert f(x)-\chi_{K}(x) \bigr\vert \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &\geq \sup_{v\in\Omega} \int_{A} \bigl\vert f(x)-1 \bigr\vert \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &> \sup_{v\in\Omega} \int_{A} \varepsilon\bigl\vert v(x) \bigr\vert \,d \lambda(x). \end{aligned}$$
Let \(B_{m}=\{x\in K: \vert T_{a,w}^{m}f(x)+1 \vert \geq\varepsilon\} \). Then
$$ T_{a,w}^{m}f(x)< \varepsilon-1< 0\quad ( x\in K\setminus B_{m}) \quad \mbox{and}\quad \sup_{v\in\Omega} \int_{B_{m}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)< \varepsilon $$
by the following estimate:
$$\begin{aligned} \varepsilon^{2} &> \bigl\Vert T_{a,w}^{m}f+ \chi_{K} \bigr\Vert _{\Phi} \\ &= \sup_{v\in\Omega} \int_{G} \bigl\vert T_{a,w}^{m}f(x)+ \chi_{K}(x) \bigr\vert \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &\geq\sup_{v\in\Omega} \int_{B_{m}} \bigl\vert T_{a,w}^{m}f(x)+1 \bigr\vert \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &> \sup_{v\in\Omega} \int_{B_{m}} \varepsilon\bigl\vert v(x) \bigr\vert \, d \lambda(x). \end{aligned}$$
Let \(E_{m}=K\setminus(A\cup B_{m})\). Then
$$\begin{aligned} \varepsilon^{2} &> \bigl\Vert \bigl(T_{a,w}^{m}f^{+} \bigr)\chi_{E_{m}a^{m}} \bigr\Vert _{\Phi} \\ &= \sup_{v\in\Omega} \int_{E_{m}a^{m}} \bigl\vert T_{a,w}^{m}f^{+}(x) \bigr\vert \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &= \sup_{v\in\Omega} \int_{E_{m}a^{m}} \bigl\vert w(x)w\bigl(xa^{-1}\bigr)\cdots w\bigl(xa^{-m+1}\bigr)f^{+}\bigl(xa^{-m}\bigr) \bigr\vert \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &= \sup_{v\in\Omega} \int_{E_{m}} \bigl\vert w\bigl(xa^{m}\bigr)w \bigl(xa^{m-1}\bigr)\cdots w(xa)f^{+}(x) \bigr\vert \bigl\vert v \bigl(xa^{m}\bigr) \bigr\vert \,d\lambda(x) \\ &= \sup_{v\in\Omega} \int_{E_{m}}\varphi_{m}(x)f^{+}(x) \bigl\vert v \bigl(xa^{m}\bigr) \bigr\vert \,d\lambda(x) \\ &> \sup_{v\in \Omega} \int_{E_{m}}(1-\varepsilon)\varphi_{m}(x) \bigl\vert v\bigl(xa^{m}\bigr) \bigr\vert \,d\lambda(x). \end{aligned}$$
Hence
$$ \sup_{v\in\Omega} \int_{E_{m}}\varphi_{m}(x) \bigl\vert v \bigl(xa^{m}\bigr) \bigr\vert \,d\lambda(x)< \frac{\varepsilon^{2}}{1-\varepsilon}. $$
Similarly,
$$ \sup_{v\in\Omega} \int_{E_{m}}\widetilde{\varphi}_{m}(x) \bigl\vert v \bigl(xa^{-m}\bigr) \bigr\vert \,d\lambda(x)< \frac{\varepsilon^{2}}{1-\varepsilon} $$
by
$$\begin{aligned} \varepsilon^{2} &> \bigl\Vert f^{-}\chi_{E_{m}a^{-m}} \bigr\Vert _{\Phi} \\ &= \sup_{v\in \Omega} \int_{E_{m}a^{-m}} \bigl\vert S_{a,w}^{m} \bigl(T_{a,w}^{m}f^{-}\bigr) (x) \bigr\vert \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &= \sup_{v\in\Omega} \int_{E_{m}a^{-m}} \bigl\vert w(xa)w\bigl(xa^{2}\bigr) \cdots w\bigl(xa^{m}\bigr) \bigl(T_{a,w}^{m}f \bigr)^{-}\bigl(xa^{m}\bigr) \bigr\vert \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &= \sup_{v\in\Omega} \int_{E_{m}} \bigl\vert w\bigl(xa^{-m+1}\bigr)w \bigl(xa^{-m+2}\bigr)\cdots w(x) \bigl(T_{a,w}^{m}f \bigr)^{-}(x) \bigr\vert \bigl\vert v\bigl(xa^{-m}\bigr) \bigr\vert \,d\lambda(x) \\ &= \sup_{v\in\Omega} \int_{E_{m}}\widetilde{\varphi}_{m}(x) \bigl(T_{a}^{m}f\bigr)^{-}(x) \bigl\vert v \bigl(xa^{-m}\bigr) \bigr\vert \,d\lambda(x) \\ &> \sup_{v\in\Omega} \int_{E_{m}}(1-\varepsilon)\widetilde{\varphi}_{m}(x) \bigl\vert v\bigl(xa^{-m}\bigr) \bigr\vert \,d\lambda(x). \end{aligned}$$
Also, we have
$$\begin{aligned} & \sup_{v\in\Omega} \int_{K\setminus{E_{m}}} \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &\quad= \sup_{v\in\Omega} \int_{A\cup B_{m}} \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &\quad\leq \sup_{v\in\Omega} \int_{A} \bigl\vert v(x) \bigr\vert \,d\lambda(x) + \sup _{v\in \Omega} \int_{B_{m}} \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &\quad< \varepsilon+\varepsilon=2\varepsilon. \end{aligned}$$

Combining all these, condition (ii) follows. □

Replacing the subsequence \((n_{k})\) by the full sequence \((n)\) in condition (ii) of Theorem 2.1, the characterization for \(T_{a,w}\) to be topologically mixing on \(L^{\Phi}(G)\) is obtained below.

Corollary 2.2

LetGbe a locally compact group and let\(a\in G\). Letwbe a weight onG, and let Φ be a Young function. Let\(T_{a,w}\)be a weighted translation on\(L^{\Phi}(G)\). Then the following conditions are equivalent.
  1. (i)

    \(T_{a,w}\)is topologically mixing on\(L^{\Phi}(G)\).

     
  2. (ii)
    For each compact subsetKofGwith\(\lambda(K)>0\), there exists a sequence of Borel sets\((E_{n})\)inKsuch that
    $$ \lim_{n \rightarrow\infty}\sup_{v\in\Omega} \int_{K\setminus{E_{n}}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)=0, $$
    and the two sequences
    $$ \varphi_{n}:=\prod_{j=1}^{n}w \ast\delta_{a^{-1}}^{j}\quad \textit{and} \quad {\widetilde{\varphi}_{n}}:= \Biggl(\prod_{j=0}^{n-1}w \ast\delta_{a}^{j}\Biggr)^{-1} $$
    satisfy
    $$ \lim_{n \rightarrow\infty}\sup_{v\in \Omega} \int_{E_{n}}\varphi_{n}(x) \bigl\vert v \bigl(xa^{n}\bigr) \bigr\vert \,d\lambda(x)=0 $$
    and
    $$ \lim_{n \rightarrow\infty}\sup_{v\in\Omega} \int_{E_{n}}\widetilde{\varphi}_{n}(x) \bigl\vert v\bigl(xa^{-n}\bigr) \bigr\vert \,d\lambda(x)=0, $$
    where Ω is the set of all Borel functionsvonGsatisfying\(\int_{G} \Psi( \vert v \vert )\,d\lambda\leq1\).
     

Proof

(ii) ⇒ (i). As in the proof of Theorem 2.1, let
$$ v_{n}=f\chi_{E_{n}}+S_{a,w}^{n}(g \chi_{E_{n}}). $$
Then
$$ \Vert v_{n}-f \Vert _{\Phi}\rightarrow0 \quad\mbox{and}\quad \bigl\Vert T_{a,w}^{n}v_{n}-g \bigr\Vert _{\Phi}\rightarrow0 $$
as \(n\rightarrow\infty\). Hence \(T_{a,w}\) is topologically mixing.
(i) ⇒ (ii). Let \(\varepsilon\in(0,1)\). Let K be a compact subset of G, and let \(\chi_{K}\) be the characteristic function of K. By the assumption of topological mixing, there exists \(f\in L^{\Phi}(G)\) such that
$$ \Vert f-\chi_{K} \Vert _{\Phi} < \varepsilon^{2}\quad \mbox{and}\quad \bigl\Vert T_{a,w}^{n}f+\chi_{K} \bigr\Vert _{\Phi}< \varepsilon^{2}. $$
Applying a similar argument as in the proof of Theorem 2.1, one can obtain condition (ii). □

3 Disjoint topological transitivity

In this section, we turn our attention to give sufficient conditions and necessary conditions for powers of weighted translations on \(L^{\Phi}(G)\) to be disjoint topologically transitive and disjoint topologically mixing.

Theorem 3.1

LetGbe a locally compact group, and let\(a\in G\). Let Φ be a Young function. Given some\(N\geq2\), let\(T_{l}=T_{a,w_{l}}\)be a weighted translation on\(L^{\Phi}(G)\), generated by a weight\(w_{l}\)onGfor\(1\leq l \leq N\). Let\(r_{l}\in\mathbb{N}\)for\(1\leq l \leq N\). For\(1\leq r_{1}< r_{2}< \cdots< r_{N}\), (ii) implies (i).
  1. (i)

    \(T_{1}^{r_{1}}, T_{2}^{r_{2}},\ldots, T_{N}^{r_{N}}\)are disjoint topologically transitive on\(L^{\Phi}(G)\).

     
  2. (ii)
    For each compact subsetKofGwith\(\lambda(K)>0\), there exist a sequence of Borel sets\((E_{k})\)inKand a strictly increasing sequence\((n_{k})\subset\mathbb{N}\)such that
    $$ \lim_{k \rightarrow\infty}\sup_{v\in\Omega} \int_{K\setminus{E_{k}}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)=0, $$
    and the two sequences
    $$ \varphi_{l,r_{l}n}:=\prod_{j=1}^{r_{l}n}w_{l} \ast\delta_{a^{-1}}^{j}\quad \textit{and} \quad{\widetilde{\varphi}_{l,r_{l}n}}:= \Biggl(\prod_{j=0}^{r_{l}n-1}w_{l} \ast \delta_{a}^{j} \Biggr)^{-1} $$
    satisfy (for\(1\leq l \leq N\))
    $$\begin{aligned} &\lim_{k \rightarrow\infty}\sup_{v\in \Omega} \int_{E_{k}}\varphi_{l,r_{l}n_{k}}(x) \bigl\vert v \bigl(xa^{r_{l}n_{k}}\bigr) \bigr\vert \,d\lambda(x)=0, \\ &\lim_{k \rightarrow\infty}\sup_{v\in\Omega} \int_{E_{k}}\widetilde{\varphi}_{l,r_{l}n_{k}}(x) \bigl\vert v\bigl(xa^{-r_{l}n_{k}}\bigr) \bigr\vert \,d\lambda(x)=0, \end{aligned}$$
    and (for\(1\leq s < l \leq L\))
    $$\begin{aligned} &\lim_{k \rightarrow\infty}\sup_{v\in\Omega} \int_{E_{k}}\frac{{\widetilde{\varphi}_{s,(r_{l}-r_{s})n_{k}}}\cdot{\widetilde{\varphi}_{l,r_{l}n_{k}}}}{{ \widetilde{\varphi}_{s,r_{l}n_{k}}}}(x) \bigl\vert v \bigl(xa^{r_{s}n_{k}-r_{l}n_{k}}\bigr) \bigr\vert \,d\lambda(x)=0, \\ &\lim_{k \rightarrow\infty}\sup_{v\in\Omega} \int_{E_{k}}\frac{\varphi_{l,(r_{l}-r_{s})n_{k}}\cdot{\widetilde{\varphi}_{s,r_{s}n_{k}}}}{{\widetilde{\varphi}_{l,r_{s}n_{k}}}}(x) \bigl\vert v \bigl(xa^{r_{l}n_{k}-r_{s}n_{k}}\bigr) \bigr\vert \,d\lambda(x)=0, \end{aligned}$$
    where Ω is the set of all Borel functionsvonGsatisfying\(\int_{G} \Psi( \vert v \vert )\,d\lambda\leq1\).
     

Proof

We show that \(T_{1}^{r_{1}}, T_{2}^{r_{2}},\ldots, T_{N}^{r_{N}}\) are disjoint topologically transitive. For \(1\leq l\leq N\), let U and \(V_{l}\) be non-empty open subsets of \(L^{\Phi}(G)\). Since the space \(C_{c}(G)\) of continuous functions on G with compact support is dense in \(L^{\Phi}(G)\), we can pick \(f,g_{l}\in C_{c}(G)\) with \(f\in U\) and \(g_{l}\in V_{l}\) for \(l=1,2,\ldots,N\). Let K be the union of the compact supports of f and all \(g_{l}\). Let \(E_{k}\subset K\) and the sequences \((\varphi _{l,r_{l}n_{k}}), ({\widetilde{\varphi}_{l,r_{l}n_{k}}})\) satisfy condition (ii).

First, for \(1\leq l\leq N\), we have
$$\begin{aligned} &\bigl\Vert T_{l}^{r_{l}n_{k}}(f\chi_{E_{k}}) \bigr\Vert _{\Phi} \\ &\quad=\sup_{v\in\Omega} \int_{G} \bigl\vert T_{l}^{r_{l}n_{k}}(f \chi_{E_{k}}) (x)v(x) \bigr\vert \,d\lambda(x) \\ &\quad=\sup_{v\in\Omega} \int_{G} \bigl\vert w_{l}(x)w_{l} \bigl(xa^{-1}\bigr)\cdots w_{l}\bigl(xa^{-r_{l}n_{k}+1}\bigr)f \bigl(xa^{-r_{l}n_{k}}\bigr)\chi_{E_{k}}\bigl(xa^{-r_{l}n_{k}}\bigr)v(x) \bigr\vert \,d\lambda(x) \\ &\quad=\sup_{v\in\Omega} \int_{G} \bigl\vert w_{l}\bigl(xa^{r_{l}n_{k}} \bigr)w_{l}\bigl(xa^{r_{l}n_{k}-1}\bigr)\cdots w_{l}(xa)f(x) \chi_{E_{k}}(x)v\bigl(xa^{r_{l}n_{k}}\bigr) \bigr\vert \,d\lambda(x) \\ &\quad \leq \Vert f \Vert _{\infty}\cdot\sup_{v\in\Omega} \int_{E_{k}}\varphi_{l,r_{l}n_{k}}(x) \bigl\vert v \bigl(xa^{r_{l}n_{k}}\bigr) \bigr\vert \,d\lambda(x)\rightarrow0 \end{aligned}$$
as \(k\longrightarrow\infty\). Here we denote \(S_{a,w_{l}}\) by \(S_{l}\). Applying similar arguments to the iterates \(S_{l}^{r_{l}n_{k}}\), and using the sequence \((\widetilde{\varphi}_{l,r_{l}n_{k}})\), for \(1\leq l\leq N\), we have
$$\begin{aligned} & \bigl\Vert S_{l}^{r_{l}n_{k}}(g_{l} \chi_{E_{k}}) \bigr\Vert _{\Phi} \\ &\quad=\sup_{v\in\Omega} \int_{G} \bigl\vert S_{l}^{r_{l}n_{k}}(g_{l} \chi_{E_{k}}) (x)v(x) \bigr\vert \,d\lambda(x) \\ &\quad=\sup_{v\in\Omega} \int_{G}\frac{1}{ \vert w_{l}(xa)w_{l}(xa^{2})\cdots w_{l}(xa^{r_{l}n_{k}}) \vert } \bigl\vert g_{l} \bigl(xa^{r_{l}n_{k}}\bigr)\chi_{E_{k}}\bigl(xa^{r_{l}n_{k}}\bigr)v(x) \bigr\vert \,d\lambda(x) \\ &\quad=\sup_{v\in\Omega} \int_{G}\frac{1}{ \vert w_{l}(xa^{-r_{l}n_{k}+1})w_{l}(xa^{-r_{l}n_{k}+2})\cdots w_{l}(x) \vert } \bigl\vert g_{l}(x) \chi_{E_{k}}(x)v\bigl(xa^{-r_{l}n_{k}}\bigr) \bigr\vert \,d\lambda(x) \\ &\quad\leq \Vert g_{l} \Vert _{\infty}\cdot\sup _{v\in\Omega} \int_{E_{k}}\widetilde{\varphi}_{l,r_{l}n_{k}}(x) \bigl\vert v\bigl(xa^{-r_{l}n_{k}}\bigr) \bigr\vert \,d\lambda (x)\rightarrow0 \end{aligned}$$
as \(k\longrightarrow\infty\). Moreover, for \(1\leq s< l\leq N\), we have
$$\begin{aligned} & \bigl\Vert T_{l}^{r_{l}n_{k}}\bigl(S_{s}^{r_{s}n_{k}}g_{s} \chi_{E_{k}}\bigr) \bigr\Vert _{\Phi}\\ &\quad=\sup_{v\in\Omega} \int_{G} \bigl\vert w_{l}(x)w_{l} \bigl(xa^{-1}\bigr)\cdots w_{l}\bigl(xa^{-(r_{l}n_{k}-1)}\bigr) \bigr\vert \bigl\vert S_{s}^{r_{s}n_{k}}g_{s} \chi_{E_{k}}\bigl(xa^{-r_{l}n_{k}}\bigr)v(x) \bigr\vert \,d\lambda(x) \\ &\quad=\sup_{v\in\Omega} \int_{G}\frac{ \vert w_{l}(x)w_{l}(xa^{-1})\cdots w_{l}(xa^{-(r_{l}n_{k}-1)}) \vert }{ \vert w_{s}(xa^{-r_{l}n_{k}+1})w_{s}(xa^{-r_{l}n_{k}+2})\cdots w_{s}(xa^{-r_{l}n_{k}+r_{s}n_{k}}) \vert } \\ & \qquad{}\times\bigl\vert g_{s}\chi_{E_{k}}\bigl(xa^{-r_{l}n_{k}+r_{s}n_{k}} \bigr)v(x) \bigr\vert \,d\lambda(x) \\ &\quad=\sup_{v\in\Omega} \int_{E_{k}}\frac{\vert w_{l}(xa^{-(r_{s}-r_{l})n_{k}})w_{l}(xa^{-(r_{s}-r_{l})n_{k}-1})\cdots w_{l}(xa^{-(r_{s}n_{k}-1)}) \vert }{ \vert w_{s}(xa^{-(r_{s}n_{k}-1)})w_{s}(xa^{-(r_{s}n_{k}-2)})\cdots w_{s}(x) \vert ^{p}}\\ &\qquad{}\times \bigl\vert g_{s}(x)v \bigl(xa^{r_{l}n_{k}-r_{s}n_{k}}\bigr) \bigr\vert \,d\lambda(x) \\ &\quad=\sup_{v\in\Omega} \int_{E_{k}}\frac{\varphi_{l,(r_{l}-r_{s})n_{k}}(x)\cdot{\widetilde{\varphi}_{s,r_{s}n_{k}}}(x)}{{\widetilde{\varphi}_{l,r_{s}n_{k}}}(x)}\bigl\vert g_{s}(x)v\bigl(xa^{r_{l}n_{k}-r_{s}n_{k}}\bigr) \bigr\vert \,d\lambda(x) \\ &\quad \leq \Vert g_{s} \Vert _{\infty}\cdot\sup _{v\in\Omega} \int_{E_{k}}\frac{\varphi_{l,(r_{l}-r_{s})n_{k}}(x)\cdot{\widetilde{\varphi}_{s,r_{s}n_{k}}}(x)}{{\widetilde{\varphi}_{l,r_{s}n_{k}}}(x)} \bigl\vert v \bigl(xa^{r_{l}n_{k}-r_{s}n_{k}}\bigr) \bigr\vert \,d\lambda(x)\longrightarrow0 \end{aligned}$$
as \(k\longrightarrow\infty\). Similarly, we have
$$\begin{aligned} & \bigl\Vert T_{s}^{r_{s}n_{k}}\bigl(S_{l}^{r_{l}n_{k}}g_{l} \chi_{E_{k}}\bigr) \bigr\Vert _{\Phi}\\ &\quad=\sup_{v\in\Omega} \int_{G} \bigl\vert w_{s}(x)w_{s} \bigl(xa^{-1}\bigr)\cdots w_{s}\bigl(xa^{-(r_{s}n_{k}-1)}\bigr) \bigr\vert \bigl\vert S_{l}^{r_{l}n_{k}}g_{l} \chi_{E_{k}}\bigl(xa^{-r_{s}n_{k}}\bigr)v(x) \bigr\vert \,d\lambda(x) \\ &\quad=\sup_{v\in\Omega} \int_{G}\frac{ \vert w_{s}(x)w_{s}(xa^{-1})\cdots w_{s}(xa^{-(r_{s}n_{k}-1)}) \vert }{ \vert w_{l}(xa^{-r_{s}n_{k}+1})w_{l}(xa^{-r_{s}n_{k}+2})\cdots w_{l}(xa^{-r_{s}n_{k}+r_{l}n_{k}}) \vert } \\ &\qquad{}\times \bigl\vert g_{l}\chi_{E_{k}}\bigl(xa^{-r_{s}n_{k}+r_{l}n_{k}} \bigr)v(x) \bigr\vert \,d\lambda(x) \\ &\quad=\sup_{v\in\Omega} \int_{E_{k}}\frac{\vert w_{s}(xa^{-(r_{l}-r_{s})n_{k}})w_{s}(xa^{-(r_{l}-r_{s})n_{k}-1})\cdots w_{s}(xa^{-(r_{l}n_{k}-1)}) \vert }{ \vert w_{l}(xa^{-(r_{l}n_{k}-1)})w_{l}(xa^{-(r_{l}n_{k}-2)})\cdots w_{l}(x) \vert }\\ &\qquad{}\times \bigl\vert g_{l}(x)v \bigl(xa^{-(r_{l}n_{k}-r_{s}n_{k})}\bigr) \bigr\vert \,d\lambda(x) \\ &\quad=\sup_{v\in\Omega} \int_{E_{k}}\frac{\widetilde{\varphi}_{l,(r_{l}-r_{s})n_{k}}(x)\cdot{\widetilde{\varphi}_{l,r_{l}n_{k}}}(x)}{{\widetilde{\varphi}_{s,r_{l}n_{k}}}(x)}\bigl\vert g_{l}(x)v\bigl(xa^{-(r_{l}n_{k}-r_{s}n_{k})}\bigr) \bigr\vert \,d\lambda(x) \\ &\quad\leq \Vert g_{l} \Vert _{\infty}\cdot\sup _{v\in\Omega} \int_{E_{k}}\frac{\widetilde{\varphi}_{s,(r_{l}-r_{s})n_{k}}(x)\cdot{\widetilde{\varphi}_{l,r_{l}n_{k}}}(x)}{{\widetilde{\varphi}_{s,r_{l}n_{k}}}(x)} \bigl\vert v \bigl(xa^{-(r_{l}n_{k}-r_{s}n_{k})}\bigr) \bigr\vert \,d\lambda (x)\longrightarrow0 \end{aligned}$$
as \(k\longrightarrow\infty\). Also, as in the proof of Theorem 2.1, we have
$$ \lim_{k\rightarrow\infty} \Vert f\chi_{E_{k}}-f \Vert _{\Phi}=\lim_{k\rightarrow\infty} \Vert g_{l} \chi_{E_{k}}-g_{l} \Vert _{\Phi}=0 $$
by the condition
$$ \lim_{k \rightarrow\infty}\sup_{v\in\Omega} \int_{K\setminus{E_{k}}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)=0. $$
Now for each \(k\in\mathbb{N}\), we let
$$ v_{k}=f\chi_{E_{k}}+S^{r_{1}n_{k}}_{1}(g_{1} \chi_{E_{k}})+S^{r_{2}n_{k}}_{2}(g_{2} \chi_{E_{k}})+\cdots+S^{r_{N}n_{k}}_{N}(g_{N} \chi_{E_{k}}). $$
Then, by using the Minkowski inequality, we arrive at
$$ \Vert v_{k}-f \Vert _{\Phi}\leq \Vert f \chi_{E_{k}}-f \Vert _{\Phi}+\sum_{l=1}^{N} \bigl\Vert S^{r_{l}n_{k}}_{l}(g_{l} \chi_{E_{k}}) \bigr\Vert _{\Phi}$$
and
$$\begin{aligned} & \bigl\Vert T^{r_{l}n_{k}}_{l}v_{k}-g_{l} \bigr\Vert _{\Phi}\\ &\quad\leq \bigl\Vert T^{r_{l}n_{k}}_{l}(f\chi_{E_{k}}) \bigr\Vert _{\Phi}+ \bigl\Vert T^{r_{l}n_{k}}_{l}S_{1}^{r_{1}n_{k}}(g_{1}\chi_{E_{k}}) \bigr\Vert _{\Phi}+\cdots+ \bigl\Vert T^{r_{l}n_{k}}_{l}S_{l-1}^{r_{l-1}n_{k}}(g_{l-1} \chi_{E_{k}}) \bigr\Vert _{\Phi}\\ &\qquad{}+ \Vert g_{l}\chi_{E_{k}}-g_{l} \Vert _{\Phi}+ \bigl\Vert T^{r_{l}n_{k}}_{l}S_{l+1}^{r_{l+1}n_{k}}(g_{l+1}\chi_{E_{k}}) \bigr\Vert _{\Phi}+\cdots+ \bigl\Vert T^{r_{l}n_{k}}_{l}S_{N}^{r_{N}n_{k}}(g_{N} \chi_{E_{k}}) \bigr\Vert _{\Phi}. \end{aligned}$$
Hence \(\lim_{k\rightarrow\infty}v_{k}=f\) and \(\lim_{k\rightarrow \infty}T_{l}^{r_{l}n_{k}}v_{k}=g_{l}\) for \(l=1,2,\ldots,N\), which implies
$$ \emptyset\neq U\cap T_{1}^{-{r_{1}n_{k}}}(V_{1})\cap T_{2}^{-{r_{2}n_{k}}}(V_{2})\cap\cdots\cap T_{N}^{-{r_{N}n_{k}}}(V_{N}). $$
 □

As in Sect. 2, one can strengthen the weight condition to characterize disjoint topological mixing.

Corollary 3.2

LetGbe a locally compact group, and let\(a\in G\). Let Φ be a Young function. Given some\(N\geq2\), let\(T_{l}=T_{a,w_{l}}\)be a weighted translation on\(L^{\Phi}(G)\), generated by a weight\(w_{l}\)onGfor\(1\leq l\leq N\). Let\(r_{l}\in\mathbb{N}\)for\(1\leq l \leq N\). For\(1\leq r_{1}< r_{2}< \cdots< r_{N}\), we have (ii) implies (i).
  1. (i)

    \(T_{1}^{r_{1}}, T_{2}^{r_{2}},\ldots, T_{N}^{r_{N}}\)are disjoint topologically mixing on\(L^{\Phi}(G)\).

     
  2. (ii)
    For each compact subsetKofGwith\(\lambda(K)>0\), there exists a sequence of Borel sets\((E_{n})\)inKsuch that
    $$ \lim_{n \rightarrow\infty}\sup_{v\in\Omega} \int_{K\setminus{E_{n}}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)=0, $$
    and the two sequences
    $$ \varphi_{l,r_{l}n}:=\prod_{j=1}^{r_{l}n}w_{l} \ast\delta_{a^{-1}}^{j}\quad \textit{and} \quad {\widetilde{\varphi}_{l,r_{l}n}}:= \Biggl(\prod_{j=0}^{r_{l}n-1}w_{l} \ast \delta_{a}^{j} \Biggr)^{-1} $$
    satisfy (for\(1\leq l \leq N\))
    $$\begin{aligned} &\lim_{n \rightarrow\infty}\sup_{v\in \Omega} \int_{E_{n}}\varphi_{l,r_{l}n}(x) \bigl\vert v \bigl(xa^{r_{l}n}\bigr) \bigr\vert \,d\lambda(x)=0, \\ &\lim_{n \rightarrow\infty}\sup_{v\in\Omega} \int_{E_{n}}\widetilde{\varphi}_{l,r_{l}n}(x) \bigl\vert v\bigl(xa^{-r_{l}n}\bigr) \bigr\vert \,d\lambda(x)=0, \end{aligned}$$
    and (for\(1\leq s < l \leq L\))
    $$\begin{aligned} &\lim_{n \rightarrow\infty}\sup_{v\in\Omega} \int_{E_{n}}\frac{{\widetilde{\varphi}_{s,(r_{l}-r_{s})n}}\cdot{\widetilde{\varphi}_{l,r_{l}n}}}{{\widetilde{\varphi}_{s,r_{l}n}}}(x) \bigl\vert v \bigl(xa^{r_{s}n-r_{l}n}\bigr) \bigr\vert \,d\lambda(x)=0, \\ &\lim_{n\rightarrow\infty}\sup_{v\in\Omega} \int_{E_{n}}\frac{\varphi_{l,(r_{l}-r_{s})n}\cdot{\widetilde{\varphi}_{s,r_{s}n}}}{{\widetilde{\varphi}_{l,r_{s}n}}}(x) \bigl\vert v \bigl(xa^{r_{l}n-r_{s}n}\bigr) \bigr\vert \,d\lambda(x)=0, \end{aligned}$$
    where Ω is the set of all Borel functionsvonGsatisfying\(\int_{G} \Psi( \vert v \vert )\,d\lambda\leq1\).
     

Apart from the above sufficient condition for disjoint topological transitivity, one can deduce a necessary condition below.

Theorem 3.3

LetGbe a locally compact group, and let\(a\in G\). Let Φ be a Young function. Given some\(N\geq2\), let\(T_{l}=T_{a,w_{l}}\)be a weighted translation on\(L^{\Phi}(G)\), generated by a weight\(w_{l}\)onGfor\(1\leq l \leq N\). Let\(r_{l}\in\mathbb{N}\)for\(1\leq l \leq N\). For\(1\leq r_{1}< r_{2}< \cdots< r_{N}\), we have (i) implies (ii).
  1. (i)

    \(T_{1}^{r_{1}}, T_{2}^{r_{2}},\ldots, T_{N}^{r_{N}}\)are disjoint topologically transitive on\(L^{\Phi}(G)\).

     
  2. (ii)
    For each compact subsetKofGwith\(\lambda(K)>0\), there exist a sequence of Borel sets\((E_{k})\)inKand a strictly increasing sequence\((n_{k})\subset\mathbb{N}\)such that
    $$ \lim_{k \rightarrow\infty}\sup_{v\in\Omega} \int_{K\setminus{E_{k}}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)=0, $$
    and the two sequences
    $$ \varphi_{l,r_{l}n}:=\prod_{j=1}^{r_{l}n}w_{l} \ast\delta_{a^{-1}}^{j}\quad \textit{and}\quad {\widetilde{\varphi}_{l,r_{l}n}}:= \Biggl(\prod_{j=0}^{r_{l}n-1}w_{l} \ast \delta_{a}^{j} \Biggr)^{-1} $$
    satisfy (for\(1\leq l \leq N\))
    $$\begin{aligned} &\lim_{k \rightarrow\infty}\sup_{v\in \Omega} \int_{E_{k}}\varphi_{l,r_{l}n_{k}}(x) \bigl\vert v \bigl(xa^{r_{l}n_{k}}\bigr) \bigr\vert \,d\lambda(x)=0, \\ &\lim_{k \rightarrow\infty}\sup_{v\in\Omega} \int_{E_{k}}\widetilde{\varphi}_{l,r_{l}n_{k}}(x) \bigl\vert v\bigl(xa^{-r_{l}n_{k}}\bigr) \bigr\vert \,d\lambda(x)=0, \end{aligned}$$
    where Ω is the set of all Borel functionsvonGsatisfying\(\int_{G} \Psi( \vert v \vert )\,d\lambda\leq1\).
     

Proof

Let \(T_{1}^{r_{1}}, T_{2}^{r_{2}},\ldots, T_{N}^{r_{N}}\) be disjoint transitive. Let \(\varepsilon\in(0,1)\), and let \(K\subset G\) be a compact set with \(\lambda(K)>0\). Then there exist \(f\in L^{\Phi}(G)\) and some \(m\in \mathbb{N}\) such that
$$ \Vert f-\chi_{K} \Vert _{\Phi} < \varepsilon^{2}\quad \mbox{and}\quad \bigl\Vert T_{l}^{r_{l}m}f+\chi_{K} \bigr\Vert _{\Phi}< \varepsilon^{2}. $$
Let
$$ A=\bigl\{ x\in K: \bigl\vert f(x)-1 \bigr\vert \geq\varepsilon\bigr\} \quad \mbox{and} \quad B_{l,m}=\bigl\{ x\in K: \bigl\vert T_{l}^{r_{l}m}f(x)+1 \bigr\vert \geq\varepsilon\bigr\} . $$
Let
$$ E_{k}=(K\setminus A)\setminus\bigcup_{1\leq l\leq N}B_{l,m}. $$
Then as in the proof of Theorem 2.1, one can obtain
$$ \sup_{v\in\Omega} \int_{E_{k}}\varphi_{l,r_{l}m}(x) \bigl\vert v \bigl(xa^{r_{l}m}\bigr) \bigr\vert \,d\lambda(x)< \frac{\varepsilon^{2}}{1-\varepsilon} $$
and
$$ \sup_{v\in\Omega} \int_{E_{k}}\widetilde{\varphi}_{l,r_{l}m}(x) \bigl\vert v \bigl(xa^{-r_{l}m}\bigr) \bigr\vert \,d\lambda(x)< \frac{\varepsilon^{2}}{1-\varepsilon}. $$
Also, as in the proof of Theorem 2.1,
$$ \sup_{v\in\Omega} \int_{A} \bigl\vert v(x) \bigr\vert \,d\lambda(x)< \varepsilon\quad\mbox{and}\quad \sup_{v\in\Omega} \int_{B_{l,m}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)< \varepsilon. $$
Hence
$$\begin{aligned} &\sup_{v\in\Omega} \int_{K\setminus{E_{m}}} \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &\quad= \sup_{v\in\Omega} \int_{A\cup B_{1,m} \cup\cdots\cup B_{N,m} } \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &\quad\leq \sup_{v\in\Omega} \int_{A} \bigl\vert v(x) \bigr\vert \,d\lambda(x) + \sum _{l=1}^{N} \sup_{v\in \Omega} \int_{B_{l,m}} \bigl\vert v(x) \bigr\vert \,d\lambda(x) \\ &\quad < \varepsilon+N \varepsilon=(N+1)\varepsilon. \end{aligned}$$
Combining all these, condition (ii) follows. □

Similarly, a necessary condition for disjoint topological mixing follows.

Corollary 3.4

LetGbe a locally compact group, and let\(a\in G\). Let Φ be a Young function. Given some\(N\geq2\), let\(T_{l}=T_{a,w_{l}}\)be a weighted translation on\(L^{\Phi}(G)\), generated by a weight\(w_{l}\)onGfor\(1\leq l \leq N\). Let\(r_{l}\in\mathbb{N}\)for\(1\leq l \leq N\). For\(1\leq r_{1}< r_{2}< \cdots< r_{N}\), we have (i) implies (ii).
  1. (i)

    \(T_{1}^{r_{1}}, T_{2}^{r_{2}},\ldots, T_{N}^{r_{N}}\)are disjoint topologically mixing on\(L^{\Phi}(G)\).

     
  2. (ii)
    For each compact subsetKofGwith\(\lambda(K)>0\), there exists a sequence of Borel sets\((E_{n})\)inKsuch that
    $$ \lim_{n \rightarrow\infty}\sup_{v\in\Omega} \int_{K\setminus{E_{n}}} \bigl\vert v(x) \bigr\vert \,d\lambda(x)=0, $$
    and the two sequences
    $$ \varphi_{l,r_{l}n}:=\prod_{j=1}^{r_{l}n}w_{l} \ast\delta_{a^{-1}}^{j}\quad \textit{and} \quad{\widetilde{\varphi}_{l,r_{l}n}}:= \Biggl(\prod_{j=0}^{r_{l}n-1}w_{l} \ast \delta_{a}^{j} \Biggr)^{-1} $$
    satisfy (for\(1\leq l \leq N\))
    $$\begin{aligned} &\lim_{n \rightarrow\infty}\sup_{v\in \Omega} \int_{E_{n}}\varphi_{l,r_{l}n}(x) \bigl\vert v \bigl(xa^{r_{l}n}\bigr) \bigr\vert \,d\lambda(x)=0, \\ &\lim_{n \rightarrow\infty}\sup_{v\in\Omega} \int_{E_{n}}\widetilde{\varphi}_{l,r_{l}n}(x) \bigl\vert v\bigl(xa^{-r_{l}n}\bigr) \bigr\vert \,d\lambda(x)=0, \end{aligned}$$
    where Ω is the set of all Borel functionsvonGsatisfying\(\int_{G} \Psi( \vert v \vert )\,d\lambda\leq1\).
     

Notes

Acknowledgements

The authors deeply thank the reviewers and the editor for the careful reading and numerous helpful suggestions to improve this paper. The first author was supported by grant no. MOST 106-2115-M-142-002 of the Ministry of Science and Technology of the Republic of China; the second author was supported by grant no. MOST 106-2115-M-017-002 of the Ministry of Science and Technology of the Republic of China.

Authors’ contributions

Both authors contributed equally to this work. Both authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Chen, C.-C.: Disjoint hypercyclic weighted translations on groups. Banach J. Math. Anal. 11, 459–476 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chen, C.-C., Chu, C.-H.: Hypercyclic weighted translations on groups. Proc. Am. Math. Soc. 139, 2839–2846 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bès, J., Peris, A.: Disjointness in hypercyclicity. J. Math. Anal. Appl. 336, 297–315 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Salas, H.: Hypercyclic weighted shifts. Trans. Am. Math. Soc. 347, 993–1004 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Zhang, L., Lu, H.-Q., Fu, X.-M., Zhou, Z.-H.: Disjoint hypercyclic powers of weighted translations on groups. Czechoslov. Math. J. 67, 839–853 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, K.-Y.: On aperiodicity and hypercyclic weighted translation operators. J. Math. Anal. Appl. 462, 1669–1678 (2018) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Abakumov, E., Kuznetsova, Y.: Density of translates in weighted \(L^{p}\) spaces on locally compact groups. Monatshefte Math. 183, 397–413 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Azimi, M.R., Akbarbaglu, I.: Hypercyclicity of weighted translations on Orlicz spaces. Oper. Matrices 12, 27–37 (2018) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Grosse-Erdmann, K.-G., Peris, A.: Linear Chaos. Springer, Berlin (2011) CrossRefzbMATHGoogle Scholar
  10. 10.
    Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge Tracts in Math., vol. 179. Cambridge University Press, Cambridge (2009) CrossRefzbMATHGoogle Scholar
  11. 11.
    Kostić, M.: Abstract Volterra Integro-Differential Equations. CRC Press, Boca Raton (2015) zbMATHGoogle Scholar
  12. 12.
    Bernal-González, L.: Disjoint hypercyclic operators. Stud. Math. 182, 113–131 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bès, J., Martin, Ö., Peris, A., Shkarin, S.: Disjoint mixing operators. J. Funct. Anal. 263, 1283–1322 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bès, J., Martin, Ö., Sanders, R.: Weighted shifts and disjoint hypercyclicity. J. Oper. Theory 72, 15–40 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kostić, M.: Hypercyclic and chaotic integrated C-cosine functions. Filomat 26, 1–44 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Salas, H.: Dual disjoint hypercyclic operators. J. Math. Anal. Appl. 374, 106–117 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Salas, H.: The strong disjoint blow-up/collapse property. J. Funct. Spaces Appl. 2013, Article ID 146517 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Vlachou, V.: Disjoint universality for families of Taylor-type operators. J. Math. Anal. Appl. 448, 1318–1330 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tanaka, M.: Property \((T_{L^{\Phi}})\) and property \((F_{L^{\Phi}})\) for Orlicz spaces \(L^{\Phi}\). J. Funct. Anal. 272, 1406–1434 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Piaggio, M.C.: Orlicz spaces and the large scale geometry of Heintze groups. Math. Ann. 368, 433–481 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Chilin, V., Litvinov, S.: Individual ergodic theorems in noncommutative Orlicz spaces. Positivity 21, 49–59 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hästö, P.A.: The maximal operator on generalized Orlicz spaces. J. Funct. Anal. 269, 4038–4048 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Monogr. Textbooks Pure Appl. Math., vol. 146. Dekker, New York (1991) zbMATHGoogle Scholar
  24. 24.
    Ansari, S.I.: Existence of hypercyclic operators on topological vector spaces. J. Funct. Anal. 148, 384–390 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Bernal-González, L.: On hypercyclic operators on Banach spaces. Proc. Am. Math. Soc. 127, 1003–1010 (1999) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Mathematics EducationNational Taichung University of EducationTaichungTaiwan
  2. 2.Department of MathematicsNational Kaohsiung Normal UniversityKaohsiungTaiwan

Personalised recommendations