Study design and program registration
This design was registered in the international prospective register of systematic reviews (https://www.crd.york.ac.uk/PROSPERO/ID=CRD42020146932). The details of this protocol adhere to the Preferred Reporting Items for Systematic Reviews and Meta-analyses Protocols (PRISMA-P) statement [25]. Since this review is a secondary study of the literature, formal ethical approval is not applicable.
Inclusion criteria
Types of studies
Only clinical randomized controlled trials (RCTs) of oral care interventions will be included in this review. The quasi-RCTs and non-RCTs will be excluded. If there is a cross-cover randomized controlled trial, the first period will be included as a parallel-group trial.
Types of patients
The ICU patients who did not receive mechanical ventilation without lower respiratory tract infection at admission will be included. HAP was diagnosed as temperature > 37.8 °C, chest radiograph, cough or subjective dyspnoea. For clinical randomized controlled studies involving mechanically ventilated and non-mechanically ventilated patients from ICUs, we will determine whether to include this systematic review based on the proportion of non-mechanically ventilated patients. We will include this review only non-mechanically ventilated patients exceeding 50% of the total number. For clinical randomized controlled studies involving different settings, such as rehabilitation units, nursing homes, and communities, we include in this review only the ones with the number of non-mechanically ventilated patients from the ICUs exceeding 50% of the total number of patients.
Interventions
Patients in the experimental group received clearly defined oral care procedures, including decontamination of oropharyngeal cavities with antiseptics, oral and pharyngeal cavity rinses, and nurse-assisted tooth brushing. Patients in the control group received no treatment, ‘usual care’, or placebo. Studies that compared different types of oral care will not be included. Studies in which oral care is used as one part of whole treatment protocols will be excluded.
Outcomes
Primary outcomes
The incidence of nosocomial pneumonia is defined as the primary outcome of this review. Nosocomial pneumonia was defined as an infection of the lower respiratory tract that is diagnosed at least 48 h after the patient was admitted to the hospital, and was not present or incubated at the time of hospital admission [26].
Secondary outcomes
Other outcomes, such as mortality, 30-day mortality, duration of ICU stay, oral health indices (including periodontal index, plaque index, bleeding index, gingival index, aetiological diagnosis results, etc.), the usage of antibiotics, adverse effects of the intervention, and economic data were defined as secondary outcomes. Mortality was defined as all deaths reported in a given population. The 30-day mortality was defined as all deaths reported in a given population within 30 days. The duration of ICU stay was defined as the number of days in the ICU. The periodontal index was defined as a numerical rating scale for classifying the periodontal status of a person or population with a single figure that considers the prevalence and severity of the condition [27]. The aetiological diagnosis results included the number or categories of bacterial colonies in the patients' mouths. The usage of antibiotics includes the type, dosage, frequency, and duration of the antibiotic. The adverse effects include more serious infections, complications, and deaths. The economic data include total hospitalization expenses, nursing expenses, drug expenses, etc.
Search strategy
Online electronic databases
Four English online electronic databases, Embase (via embase.com), MEDLINE (via PubMed), CINAHL (via EBSCOhost), and Cochrane Central Register of Controlled Trials (CENTRAL), will be systematically searched without language restrictions from their inception to the protocol publication date. Four Chinese-language databases, the WanFang Database, Sino-Med Database, Chinese Science and Technology Periodical (VIP) Database, and China National Knowledge Infrastructure (CNKI) database, will be searched from their inception to the protocol publication date. The English terms were used individually or combined with “intensive care” “nosocomial infection”, “oral care”, and “mouth care”, and the Chinese search terms were “zhong zheng jian hu (intensive care),” “yi yuan huo de xing fei yan (nosocomial infection),” and “kou qiang hu li oral care)”. The search strategy we built for MEDLINE via PubMed is presented in Table 1 after a preliminary search, which was performed according to the Cochrane Handbook for Systematic Reviews of Interventions [28]. Some adaptive changes will be made when searching other databases. Of course, to improve the quality of the research, if the search strategy is fine-tuned or changed during the research, we will explain further in the results report. Before completing the results report, we will conduct a literature search again to avoid missed inspections that affect the reliability of the results.
Table 1 Search strategy for MEDLINE via PubMed
Additional resources
Although there are no full-text articles in Chinese or English, articles with Chinese or English titles or abstracts will also be screened. We will also conduct a hand-search of the reference list of relevant trials, other systematic reviews, and meta-analyses.
Data collection and analysis
Research management and screening
The literature management software, EndNoteX7, will be used in this review to manage all records collected. Before two independent reviewers read the title and abstract of the trials, duplicate records will be removed from the literature database. Ineligible records will then be identified and removed. The full text of these records will be read independently assessed by two reviewers for potentially eligible records. Finally, eligible literature was selected according to the predetermined inclusion criteria. All records included must fit the type of study, type of patients, intervention, and design (PIS) strategy of this review. The lead author will be contacted via email when more information is needed to decide. If there is any disagreement, the final consensus is generated through discussion with a third reviewer. Details of the literature screening will be reported following the PRISMA flow diagram (Fig. 1). All steps and results of this review will be reported according to the PRISMA 2020 statement [29].
Data extraction and management
First, all data will be extracted according to the data table previously prepared by one researcher. Then, all extracted data will be verified by another researcher. The information we will extract is multifaceted. The information will be extracted from each included trial as follows: (1) basic information of the studies, including the journal, year of publication, author, author institutions, and title; (2) characteristics of the participants of RCTs, including sex, age, inclusion/exclusion criteria; (3) intervention used in groups, including the intensity, frequency, and period; (4) methodological information of each trial, including random sequence generation, allocation concealment, blinding of participants, and blinding of outcomes assessment; and (5) outcomes, including instruments, drop-out, follow-up, and adverse events. If there are any missing data, the lead author will be emailed to ask for it. The measurement data will be described using the mean and standard deviation (SD) or standard error (SE). The count data will be described using the number of events. The two arms’ data that most fit this review aims will be extracted rather than all arms if there are more than two arms in the study. Before entering data into RevMan5.3 for analysis, necessary data conversion will be performed via spreadsheet software (Microsoft Excel). If there is any disagreement, a final consensus is generated through discussion with a third review author.
The risk of bias assessment for included studies
The quality of the included studies will be assessed using version 2 of the Cochrane risk-of-bias tool for randomized trials (RoB2), which was recommended by the Cochrane Handbook for Systematic Reviews of Interventions [28] by two reviewers independently. The domains included in RoB2 are (1) bias arising from the randomization process; (2) bias due to deviations from intended interventions; (3) bias due to missing outcome data; (4) bias in the measurement of the outcome; and (5) bias in the selection of the reported results. For each domain, the toll comprises (1) a series of “signalling questions”; (2) a judgement about risk of bias for the domains; (3) free text boxes to justify responses to the signalling questions and risk-of-bias judgement; and (4) an option to predict (and explain) the likely direction of bias [28]. If there is any disagreement, a final consensus will be generated through discussion with a third review author.
Handling of missing data
If there are any missing data, original authors will be contacted to request it. If the missing data are not obtained, the analysis will be performed only using the available data. The effect of missing data on the final results will be discussed in the discussion section.
Assessment of heterogeneity
Heterogeneity across trials will be detected by the χ2 test with a 0.10 level as the cut-off value (P < 0.1). A low P value or a large χ2 statistic provides evidence of heterogeneity of intervention effects. Heterogeneity across trials will be quantified using the I2 statistic. Studies with an I2 value of more than 75% will be considered to have a high degree of heterogeneity according to the Cochrane Handbook for Systematic Reviews of Interventions [28]. A Bayesian meta-analysis will also be performed to estimate the magnitude of the heterogeneity variance and comparing it with the distribution suggested by Turner et al. [30] and Rhodes et al. [31] using the WinBUGS software. If the included studies have good homogeneity, the overall effect will be synthesized [32]. Otherwise, the sources of heterogeneity will be explored via subgroup and analysis meta-regression [32]. In addition to statistical heterogeneity, clinical heterogeneity, methodological heterogeneity, and measuring heterogeneity will also be considered in data analysis and result interpretation.
Evaluation of publication bias
If more than 10 studies report a single outcome, funnel plots will be structured to investigate publication bias [32]. Asymmetry in the funnel plot indicates possible publication bias.
Data synthesis
If there are sufficient studies focusing on similar comparisons and the same outcomes, both a fixed-effect model and a random-effect model meta-analysis will be undertaken. A Bayesian meta-analysis will also be performed to increase the reliability, credibility, and power of the results suggested by Turner et al. [30] and Rhodes et al. [31] using the WinBUGS software. Otherwise, the results will be narratively reported. The meta-analysis results will be validated using an eight-step procedure according to the report [33]. Additionally, we will apply trial sequential analysis on meta-analyses to adjust for random error risk in meta-analyses. The interpretation of meta-analyses will combine Bayesian meta-analysis with sequential trial analysis, subgroup analyses, funnel plots, meta-regression analyses, etc .[34]
Subgroup analyses
Clinical heterogeneity, such as whether toothbrushes were used or not and different types of mouthwash, will be considered for subgroup analyses. Subgroup analysis will also be conducted between high-risk and low-risk studies. The results will be reported and discussed in the discussion section.
Sensitivity analysis
Studies that with a low methodological quality adversely affect the strength of the evidence, so sensitivity analysis will be performed to investigate the effect of these trials on the evidence. It will be performed by excluding a study and comparing the results changes. The results will be reported and discussed in the discussion section.
Grading the quality of evidence
The quality of evidence for outcomes will be evaluated according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system, which rates the quality of evidence into four levels (high, moderate, low, very low levels) [35]. “Summary of findings” tables will be used to present the main findings and key information concerning the quality of evidence via GRADEprofilter and RevMan. “Summary of Findings” tables for each compression included six elements: (1) A list of all important outcomes such as the incidence of nosocomial pneumonia, mortality, 30-day mortality, duration of ICU stay, oral health indices, etc. (2) A measure of the typical burden of these outcomes (e.g., illustrative risk, or illustrative mean, on control intervention). (3) Absolute and (or) relative magnitude of effect. (4) Numbers of patients and studies addressing each outcome. (5) A rating of the overall quality of the evidence for each outcome. (6) Comments.