Aronson EL, Allison SD, Helliker BR (2013) Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front Microbiol 4:225. doi:10.3389/fmicb.2013.00225
Article
PubMed
PubMed Central
Google Scholar
Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci 105(29):10203–10208
CAS
Article
PubMed
PubMed Central
Google Scholar
Balasubramanian R, Rosenzweig AC (2007) Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Acc Chem Res 40(7):573–580
CAS
Article
PubMed
Google Scholar
Beal EJ, House CH, Orphan VJ (2009) Managense- and iron- dependent marine methane oxidation. Science 325(5937):184–187. doi:10.1126/science.1169984
CAS
Article
PubMed
Google Scholar
Bédard CH, Knowles RO (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4
+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53(1):68–84
PubMed
PubMed Central
Google Scholar
Bender M, Conrad R (1992) Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios. FEMS Microbiol Ecol 101:261–270
CAS
Article
Google Scholar
Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43(7):1450–1455. doi:10.1016/j.soilbio.2011.03.012
CAS
Article
PubMed
PubMed Central
Google Scholar
Bourne DG, McDonald IR, Murrell JC (2001) Comparison of pmoA PCR primer sets as tools for investigating methanotroph diversity in three danish soils. Appl Environ Microbiol 67(9):3802–3809. doi:10.1128/AEM.67.9.3802-3809.2001
CAS
Article
PubMed
PubMed Central
Google Scholar
Cappelletti M, Ghezzi D, Zannoni D, Capaccioni B, Fedi S (2016) Diversity of methane oxidizing bacteria in soils from “Hot Lands of Medolla” (Italy) featured by anomalous high-temperatures and biogenic CO2 emissions. Microbes Environ 4:369–377. doi:10.1264/jsme2.ME16087
Article
Google Scholar
Chen YH, Prinn RG (2005) Atmospheric modeling of high- and low-frequency methane observations: importance of interannually varying transport. J Geophys Res 110:D10303. doi:10.1029/2004JD005542
Article
Google Scholar
Chi Z, Lu W, Wang H, Zhao Y (2012) Diversity of methanotrophs in a simulated modified biocover reactor. J Environ Sci (China) 6:1076–1082
Article
Google Scholar
Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycl 2:299–327
CAS
Article
Google Scholar
Coleman NV, Le NB, Ly MA, Ogawa HE, McCarl V, Wilson NL, Holmes AJ (2012) Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J 6:171–182
CAS
Article
PubMed
Google Scholar
Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO. Microbiol Rev 60(4):609–640
CAS
PubMed
PubMed Central
Google Scholar
Conrad ME, Templeton AS, Daley PF, Alvarez-Cohen L (1999) Seasonally-induced fluctuations in microbial production and consumption of methane during bioremediation of aged subsurface refinery contamination. Environ Sci Technol 33:4061–4068
CAS
Article
Google Scholar
Costello AM, Auman AJ, Macalady JL, Scow KM, Lidstrom ME (2002) Estimation of methanotroph abundance in a freshwater lake sediment. Environ Micro 8:443–450. doi:10.1046/j.1462-2920.2002.00318.x
Article
Google Scholar
Crevecoeur S, Vincent WF, Comte J, Lovejoy C (2015) Bacterial community structure across environmental gradients in permafrost thaw ponds: methanotroph-rich ecosystems. Front Microbiol 6:192. doi:10.3389/fmicb.2015.00192
Article
PubMed
PubMed Central
Google Scholar
Crombie AT, Murrell CJ (2014) Trace-gas metabolic versatility of the facultative methanotroph Methylocella Silvestris. Nature 510:148–151. doi:10.1038/nature13192
CAS
Article
PubMed
Google Scholar
Culpepper MA, Rosenzweig AC (2012) Architecture and active site of particulate methane monooxygenase. Rev Biochem Mol Biol, Crit. doi:10.3109/10409238.2012.697865
Google Scholar
Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969
CAS
Article
PubMed
Google Scholar
Dedysh SN, Naumoff DG, Vorobev AV, Kyrpides N, Woyke T, Shapiro N, Crombie AT, Murrell C, Kalyuzhnaya MG, Smirnova AV, Dunfield PF (2015) Draft genome sequence of Methyloferula stellata AR4, an obligate methanotroph possessing only a soluble methane monooxygenase. Genom Announc. doi:10.1128/genomeA.01555-14
Google Scholar
Deng Y, Cui X, Lüke C, Dumont MG (2013) Aerobic methanotroph diversity in riganqiao peatlands on the Qinghai-Tibetan Plateau. Environ Microbiol Rep 4:566–574. doi:10.1111/1758-2229.12046
Article
Google Scholar
Dubey SK (2001) Methane emission and rice agriculture. Curr Sci 81(4):345–346
CAS
Google Scholar
Dumont MG, Murrell JC (2005) Community-level analysis: key genes of aerobic methane oxidation. Methods Enzymol 397:413–427
CAS
Article
PubMed
Google Scholar
Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN (2003) Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53:1231–1239
CAS
Article
PubMed
Google Scholar
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 5:1792–1797. doi:10.1093/nar/gkh340
Article
Google Scholar
Egger M, Rasigraf O, Sapart CJ, Jilbert T, Jetten MSM, Rockmann T, van der Veen C, Banda N, Kartal B, Ettwig KF, Slomp C (2014) Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ Sci Technol 49:277–283. doi:10.1021/es503663z
Article
PubMed
Google Scholar
Erikstad HA, Birkeland NK (2015) Draft Genome Sequence of “Candidatus Methylacidiphilum kamchatkense” strain Kam1, a thermoacidophilic methanotrophic verrucomicrobium. Genome Announc 3(2):pii: e00065–15. doi:10.1128/genomeA.00065-15
Article
Google Scholar
Esson KC, Lin X, Kumaresan D, Chanton JP, Murrell JC, Kostka JE (2016) Alpha- and gammaproteobacterial methanotrophs codominate the active methane-oxidizing communities in an acidic boreal peat bog. Appl Environ Microbiol 82(8):2363–2371. doi:10.1128/AEM.03640-15
CAS
Article
PubMed
PubMed Central
Google Scholar
Ettwig KF, Shima S, de Pas-Schoonen V, Katinka T, Kahnt J, Medema MH, Op Den Camp HJ, Jetten MS, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10(11):3164–3173
CAS
Article
PubMed
Google Scholar
Frenzel P (2000) Plant-associated methane oxidation in rice fields and wetlands. Adv Microb Ecol 16:85–114
CAS
Google Scholar
Hakemian AS, Rosenzweig AC (2007) The biochemistry of methane oxidation. Annu Rev Biochem 76:223–241
CAS
Article
PubMed
Google Scholar
Han P, Gu JD (2013) A newly designed degenerate PCR primer based on pmoA gene for detection of nitrite-dependent anaerobic methane-oxidizing bacteria from different ecological niches. Appl Microbiol Biotechnol 97(23):10155–10162
CAS
Article
PubMed
Google Scholar
Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471
CAS
PubMed
PubMed Central
Google Scholar
Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson GW (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570
CAS
Article
PubMed
Google Scholar
Henckel T, Friedrich M, Conrad R (1999) Molecular analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol 65(5):1980–1990
CAS
PubMed
PubMed Central
Google Scholar
Hoefman S, Heylen K, De Vos P (2014) Methylomonas lenta sp. nov., a methanotroph isolated from manure and a denitrification tank. Int J Syst Evol. doi:10.1099/ijs.0.057794-0
Google Scholar
Holmes AJ, Owens NJP, Murrell JC (1995a) Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Microbiol 141:1947–1955
CAS
Article
Google Scholar
Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995b) Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS microbiol Lett 132(3):203–208
CAS
Article
PubMed
Google Scholar
Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen KA, Murrell JC (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65(8):3312–3318
CAS
PubMed
PubMed Central
Google Scholar
Intergovernmental Panel on Climate Change (2014) Climate Change 2014: the physical science basis. Summary for policymakers. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Paris: summary for policymakers formally approved at the 10th session of working group I of the IPCC
Joulian C, Escoffier S, Le Mer J, Neue HU, Roger PA (1997) Populations and potential activities of methanogens and methanotrophs in rice fields: relations with soil properties. Eur J Soil Biol 33(2):105–116
Google Scholar
Khadem AF, Wieczorek AS, Pol A, Vuilleumier S, Harhangi HR, Dunfield PF, Kalyuzhnaya MG, Murrell C, Francoijs KJ, Stunnenberg HG, Stein LY, DiSpirito AA, Semrau JD, Lajus AL, Medigue C, Klotz MG, Jetten MSM, Op den Camp HJM (2012) Draft genome sequence of the volcano-inhabiting thermoacidophilic methanotroph Methylacidiphilum fumariolicum strain SolV. J Bacteriol 194(14):3729–3730. doi:10.1128/JB.00501-12
CAS
Article
PubMed
PubMed Central
Google Scholar
Khmelenina VN, Beck DA, Munk C, Davenport K, Daligault H, Erkkila T, Goodwin L, Gu W, Lo CC, Scholz M, Teshima H, Xu Y, Chain P, Bringel F, Vuilleumier S, Dispirito A, Dunfield P, Jetten MS, Klotz MG, Knief C, Murrell JC, Op den Camp HJ, Sakai Y, Semrau J, Svenning M, Stein LY, Trotsenko YA, Kalyuzhnaya MG (2013) Draft Genome sequence of Methylomicrobium buryatense strain 5G, a haloalkaline-tolerant methanotrophic bacterium. Genome Announc 1(4):pii: e00053–13. doi:10.1128/genomeA.00053-13
Article
Google Scholar
Kip N, Dutilh BE, Pan Y, Bodrossy L, Neveling K, Kwint MP, Jetten MSM, Op den Camp HJM (2011) Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog. Environ Microbiol Rep 6:667–673. doi:10.1111/j.1758-2229.2011.00260.x
Article
Google Scholar
Kits KD, Kalyuzhnaya MG, Klotz MG, Jetten MS, Op den Camp HJ, Vuilleumier S, Bringel F, Dispirito AA, Murrell JC, Bruce D, Cheng JF, Copeland A, Goodwin L, Hauser L, Lajus A, Land ML, Lapidus A, Lucas S, Médigue C, Pitluck S, Woyke T, Zeytun A, Stein LY (2013) Genome sequence of the obligate Gammaproteobacterial methanotroph Methylomicrobium album strain BG8. Genome Announc 1(2):e0017013. doi:10.1128/genomeA.00170-13
Article
PubMed
Google Scholar
Knief C (2015) Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol 6:1346. doi:10.3389/fmicb.2015.01346
Article
PubMed
PubMed Central
Google Scholar
Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334
CAS
Article
PubMed
Google Scholar
Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69(5):2423–2429. doi:10.1128/AEM.69.5.2423
CAS
Article
PubMed
PubMed Central
Google Scholar
Krüger M, Frenzel P, Conrad R (2001) Microbial processes influencing methane emission from rice fields. Glob Change Biol 7:49–63
Article
Google Scholar
Lau E, Iv EJ, Dillard ZW, Dague RD, Semple AL, Wentzell WL (2015) High throughput sequencing to detect differences in methanotrophic Methylococcaceae and Methylocystaceae in surface peat, forest soil, and Sphagnum Moss in Cranesville Swamp preserve, west Virginia. USA. Microorganisms. 3(2):113–136. doi:10.3390/microorganisms3020113
Article
PubMed
Google Scholar
Lidstrom ME (2006) Aerobic methylotrophic prokaryotes. Prokaryotes 2:618–634. doi:10.1007/0-387-30742-7_20
Article
Google Scholar
Lieberman RL, Rosenzweig AC (2005) The quest for the particulate methane monooxygenase active site. Dalton Trans 21:3390–3396. doi:10.1039/b506651d
Article
Google Scholar
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371
CAS
Article
PubMed
PubMed Central
Google Scholar
Luesken FA, van Alen TA, van der Biezen E, Frijters C, Toonen G, Kampman C, Hendrickx TL, Zeeman G, Temmink H, Strous M, Op den Camp HJ, Jetten MS (2011a) Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl Microbiol Biotechnol 92:845–854. doi:10.1007/s00253-011-3361-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Luesken FA, Zhu BL, van Alen TA, Butler MK, Diaz MR, Song B, den Camp HJMO, Jetten MSM, Ettwig KF (2011b) pmoA primers for detection of anaerobic methanotrophs. Appl Environ Microbiol 77(11):3877–3880. doi:10.1128/AEM.02960-10
CAS
Article
PubMed
PubMed Central
Google Scholar
Lüke C, Frenzel P (2011) Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Appl Environ Microbiol 77(17):6305–6309. doi:10.1128/AEM.05355-11
Article
PubMed
PubMed Central
Google Scholar
Lüke C, Krause S, Cavigiolo S, Greppi D, Lupotto E, Frenzel P (2009) Biogeography of wetland rice methanotrophs. Environ Microbiol. doi:10.1111/j.1462-2920.2009.02131.x
PubMed
Google Scholar
Lüke C, Frenzel P, Ho A, Fiantis D, Schad P, Schneider B, Schwark L, Utami SR (2014) Macroecology of methane-oxidizing bacteria: the β-diversity of pmoA genotypes in tropical and subtropical rice paddies. Environ Microbiol 16(1):72–83
Article
PubMed
Google Scholar
Lüke C, Speth DR, Kox MA, Villanueva L, Jetten MS (2016) Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. Peer J 7(4):e1924. doi:10.7717/peerj.1924
Article
Google Scholar
Mitsumori M, Ajisaka N, Tajima K, Kajikawa H, Kurihara M (2002) Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett Appl Microbiol 35(3):251–255. doi:10.1046/j.1472-765X.2002.01172.x
CAS
Article
PubMed
Google Scholar
Murrell JC, McDonald IR, Bourne DG (1998) Molecular methods for the study of methanotroph ecology. Ecol, FEMS Microbiol. doi:10.1016/S0168-6496(98)00063-4
Google Scholar
Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Microbiol, Arch. doi:10.1007/s002030000158
Google Scholar
Oshkin IY, Wegner CE, Lüke C, Glagolev MV, Filippov IV, Pimenov NV, Liesack W, Dedysh SN (2014) Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of west Siberian rivers. Appl Environ Microbiol 80(19):5944–5954. doi:10.1128/AEM.01539-14
Article
PubMed
PubMed Central
Google Scholar
Padilla CC, Bristow LA, Sarode N, Garcia-Robledo E, Gómez Ramírez E, Benson CR, Bourbonnais A, Altabet MA, Girguis PR, Thamdrup B, Stewart FJ (2016) NC10 bacteria in marine oxygen minimum zones. ISME J 10(8):2067–2071. doi:10.1038/ismej.2015.262
CAS
Article
PubMed
PubMed Central
Google Scholar
Pinto AJ, Marcus DN, Ijaz UZ, Bautista-de Lose Santos QM, Dick GJ, Raskin L (2015) metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water. Syst mSphere. doi:10.1128/mSphere.00054-15
Google Scholar
Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MAHJ, Daebeler A, Steinberger M, Jetten MSM, Lücker S, Wagner M, Daims H (2016) AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. BioRxiv. doi:10.1101/096891
Google Scholar
Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450(7171):874–878
CAS
Article
PubMed
Google Scholar
Pol A, Barends TR, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM, Op den Camp HJM (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16(1):255–264. doi:10.1111/1462-2920.12249
CAS
Article
PubMed
Google Scholar
Putkinen A, Larmola T, Tuomivirta T, Siljanen HM, Bodrossy L, Tuittila ES, Fritze H (2014) Peatland succession induces a shift in the community composition of Sphagnum-associated active methanotrophs. FEMS Microbiol Ecol 88(3):596–611. doi:10.1111/1574-6941.12327
CAS
Article
PubMed
Google Scholar
Rastogi G, Ranade DR, Yeole TY, Gupta AK, Patole MS, Shouche YS (2009) Novel methanotroph diversity evidenced by molecular characterization of particulate methane monooxygenase A (pmoA) genes in a biogas reactor. Microbiol Res 164(5):536–544. doi:10.1016/j.micres.2007.05.004
CAS
Article
PubMed
Google Scholar
Reeburgh WS, Whjalen SC (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513
CAS
Article
PubMed
Google Scholar
Reeburgh WS, Whjalen SC, Alperin MJ (1993) The role of methylotrophy in the global methane budget in Microbial growth on C1 compounds. In: Murrell JC, Kelly DP (eds ) (Intercept, Andover, England). pp 1–14
Saidi-Mehrabad A, He Z, Tamas I, Sharp CE, Brady AL, Rochman FF, Bodrossy L, Abell GC, Penner T, Dong X, Sensen CW, Dunfield PF (2013) Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME J 5:908–921. doi:10.1038/ismej.2012.163
Article
Google Scholar
Samad MS, Bertilsson S (2017) Seasonal variation in abundance and diversity of bacterial methanotrophs in five temperate lakes. Front Microbiol 8:142. doi:10.3389/fmicb.2017.00142
Article
PubMed
PubMed Central
Google Scholar
Semrau JD, Chistoserdov A, Lebron J, Costello A, Davagnino J, Kenna E, Holmes AJ, Finch R, Murrell JC, Lidstrom ME (1995) Particulate methane monooxygenase genes in methanotrophs. J Bacteriol 177(11):3071–3079
CAS
Article
PubMed
PubMed Central
Google Scholar
Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, Grasby SE, Strack M, Dunfield PF (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16(6):1867–1878. doi:10.1111/1462-2920.12454
CAS
Article
PubMed
Google Scholar
Sievers F, Higgins DG (2014) Clustal Omega. Published online: 12 DEC 2014. doi: 10.1002/0471250953.bi0313s48
Siljanen HM, Saari A, Bodrossy L, Martikainen PJ (2012) Seasonal variation in the function and diversity of methanotrophs in the littoral wetland of a boreal eutrophic lake. FEMS Microbiol Ecol 80(3):548–555. doi:10.1111/j.1574-6941.2012.01321.x
CAS
Article
PubMed
Google Scholar
Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235
CAS
Article
PubMed
Google Scholar
Söhngen NL (1906) Über bakterien, welche methan als kohlenstoffnahrung und energiequelle gebrauchen. Z Bakteriol Parazitenk (Infektionster) 15:513–517
Google Scholar
Stephenson J, Kumaresan D, Hillebrand-Voiculescu AM, Brooks E, Whiteley AS, Murrell JC (2017) Draft genome sequence of the methane-oxidizing bacterium “Candidatus Methylomonas sp. LWB” isolated from movile cave. Genome Announc 5(3):pii: e01491–16. doi:10.1128/genomeA.01491-16
Article
Google Scholar
Trotsenko YA, Murrell JC (2008) Metabolic aspect of aerobic obligate methanotrophy. Adv Appl Microbiol. doi:10.1016/S0065-2164(07)00005-6
PubMed
Google Scholar
Vaksmaa A, Lüke C, van Alen T, Valè G, Lupotto E, Jetten MSM, Ettwig KF (2016) Distribution and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil. FEMS Microbiol Ecol 92(12):pii: fiw181
Article
Google Scholar
Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, Cruveiller S, Lajus A, Pascal G, Scarpelli C, Médigue C (2006) MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 34(1):53–65. doi:10.1093/nar/gkj406
CAS
Article
PubMed
PubMed Central
Google Scholar
van Kessel MA, Speth DR, Albertsen M, Nielsen PH, den Camp HJ, Kartal B, Jetten MS, Lücker S (2015) Complete nitrification by a single microorganism. Nature 528(7583):555. doi:10.1038/nature16459
PubMed
PubMed Central
Google Scholar
van Teeseling MC, Pol A, Harhangi HR, van der Zwart S, Jetten MS, Op den Camp HJ, van Niftrik L (2014) Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 80(21):6782–6791. doi:10.1128/AEM.01838-14
Article
PubMed
PubMed Central
Google Scholar
Vekeman B, Kerckhof FM, Cremers G, de Vos P, Vandamme P, Boon N, Op den Camp HJ, Heylen K (2016a) new methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase. Environ Microbiol 18(12):4523–4536. doi:10.1111/1462-2920.13485
CAS
Article
PubMed
Google Scholar
Vekeman B, Speth D, Wille J, Cremers G, De Vos P, Op den Camp HJ, Heylen K (2016b) Genome characteristics of two novel type I methanotrophs enriched from North Sea sediments containing exclusively a lanthanide-dependent XoxF5-type methanol dehydrogenase. Microb Ecol 72(3):503–509. doi:10.1007/s00248-016-0808-7
CAS
Article
PubMed
Google Scholar
Vorobev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61(10):2456–2463. doi:10.1099/ijs.0.028118-0
CAS
Article
PubMed
Google Scholar
Wang JG, Xia F, Zeleke J, Zou B, Rhee SK, Quan ZX (2017) An improved protocol with a highly degenerate primer targeting copper-containing membrane-bound monooxygenase genes for community analysis of methane- and ammonia-oxidizing bacteria. FEMS Microbiol Ecol 93(3):pii: fiw244. doi:10.1093/femsec/fiw244
Article
Google Scholar
Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJ, Jetten MS, Lücke C, Reimann J (2016) Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep 8(6):941–955. doi:10.1111/1758-2229.12487
CAS
Article
PubMed
Google Scholar
Whittenbury R, Phillips KC, Wilkinson JG (1970) Enrichment, isolation and some properties of methane utilizing bacteria. J Gen Microbiol 61:205–218
CAS
Article
PubMed
Google Scholar
Zheng Y, Zhang L-M, Zheng Y-M, Di H, He J-Z (2008) Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. J Soils Sediments 8:406–414. doi:10.1007/s11368-008-0047-8
CAS
Article
Google Scholar