Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N (2016) The cellular and molecular landscapes of the developing human central nervous system. Neuron 89:248–268. https://doi.org/10.1016/j.neuron.2015.12.008
Google Scholar
Herculano-Houzel S (2011) Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size. Ann NY Acad Sci 1225:191–199. https://doi.org/10.1111/j.1749-6632.2011.05976.x
Google Scholar
Herculano-Houzel S (2012) The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci USA 109:10661–10668
Google Scholar
Conrad MS, Dilger RN, Nickolls A, Johnson RW (2021) Magnetic resonance imaging of the neonatal piglet brain. Pediatr Res 71:179–184. https://doi.org/10.1038/pr.2011.21
Google Scholar
Conrad MS, Sutton BP, Dilger RN, Johnson RW (2014) An in vivo three-dimensional magnetic resonance imaging-based averaged brain collection of the neonatal piglet (Sus scrofa). PLoS One 9:e107650. https://doi.org/10.1371/journal.pone.0107650
Google Scholar
Ballarin C, Povinelli M, Granato A, Panin M, Corain L, Peruffo A, Cozzi B (2016) The brain of the domestic Bos taurus: weight, encephalization and cerebellar quotients, and comparison with other domestic and wild cetartiodactyla. PLoS One 11:e0154580. https://doi.org/10.1371/journal.pone.0154580
Google Scholar
Liyanage KA, Steward C, Moffat BA, Opie NL, Rind GS, John SE, Ronayne S, May CN, O’Brien TJ, Milne ME, Oxley TJ (2016) Development and implementation of a corriedale ovine brain atlas for use in atlas-based segmentation. PLoS One 11:e0155974. https://doi.org/10.1371/journal.pone.0155974
Google Scholar
Salouci M, Engelen V, Gyan M, Antoine N, Jacqmot O, Mignon Y, Kirschvink N, Gabriel A (2012) Development of Purkinje cells in the ovine brain. Anat Histol Embryol 41:227–232. https://doi.org/10.1111/j.1439-0264.2011.01127.x
Google Scholar
Schmidt MJ, Knemeyer C, Heinsen H (2019) Neuroanatomy of the equine brain as revealed by high-field (3Tesla) magnetic-resonance-imaging. PLoS One 14:e0213814. https://doi.org/10.1371/journal.pone.0213814
Google Scholar
Jerison HJ (1977) The theory of encephalisation. Ann N Y Acad Sci 299:146–160
Google Scholar
Steinhausen C, Zehl L, Haas-Rioth M, Morcinek K, Walkowiak W, Huggenberger S (2016) Multivariate meta-analysis of brain-mass correlations in eutherian mammals. Front Neuroanat 10:91. https://doi.org/10.3389/fnana.2016.00091
Google Scholar
Conrad MS, Dilger RN, Johnson RW (2012) Brain growth of the domestic pig (Sus scrofa) from 2 to 24 weeks of age: a longitudinal MRI study. Dev Neurosci 34:291–298. https://doi.org/10.1159/000339311
Google Scholar
Soto-Perez J, Baumgartner M, Kanadia RN (2020) Role of NDE1 in the development and evolution of the gyrified cortex. Front Neurosci 14:617513. https://doi.org/10.3389/fnins.2020.617513
Google Scholar
Peruffo A, Cozzi B (2014) Bovine brain: an in vitro translational model in developmental neuroscience and neurodegenerative research. Front Pediatr 2:74. https://doi.org/10.3389/fped.2014.00074
Google Scholar
Murray SJ, Black BL, Reid SJ, Rudiger SR, Simon Bawden C, Snell RG, Waldvogel HJ, Faull RLM (2019) Chemical neuroanatomy of the substantia nigra in the ovine brain. J Chem Neuroanat 97:43–56. https://doi.org/10.1016/j.jchemneu.2019.01.007
Google Scholar
John SE, Lovell TJH, Opie NL, Wilson S, Scordas TC, Wong YT, Rind GS, Ronayne S, Bauquier SH, May CN, Grayden DB, O’Brien TJ, Oxley TJ (2017) The ovine motor cortex: a review of functional mapping and cytoarchitecture. Neurosci Biobehav Rev 80:306–315. https://doi.org/10.1016/j.neubiorev.2017.06.002
Google Scholar
Cozzi B, Povinelli M, Ballarin C, Granato A (2014) The brain of the horse: weight and cephalization quotients. Brain Behav Evol 83:9–16. https://doi.org/10.1159/000356527
Google Scholar
Ryan MC, Kochunov P, Sherman PM, Rowland LM, Wijtenburg SA, Acheson A, Hong LE, Sladky J, McGuire S (2018) Miniature pig magnetic resonance spectroscopy model of normal adolescent brain development. J Neurosci Methods 308:173–182. https://doi.org/10.1016/j.jneumeth.2018.08.008
Google Scholar
Minervini S, Accogli G, Pirone A, Graïc JM, Cozzi B, Desantis S (2016) Brain mass and encephalization quotients in the domestic industrial pig (Sus scrofa). PLoS One 11:e0157378. https://doi.org/10.1371/journal.pone.0157378
Google Scholar
Nielsen KB, Søndergaard A, Johansen MG, Schauser K, Vejlsted M, Nielsen AL, Jørgensen AL, Holm IE (2010) Reelin expression during embryonic development of the pig brain. BMC Neurosci 11:75. https://doi.org/10.1186/1471-2202-11-75
Google Scholar
Jelsing J, Nielsen R, Olsen AK, Grand N, Hemmingsen R, Pakkenberg B (2006) The postnatal development of neocortical neurons and glial cells in the Gottingen minipig and the domestic pig brain. J Exp Biol 209:1454–1462. https://doi.org/10.1242/jeb.02141
Google Scholar
Pirone A, Miragliotta V, Ciregia F, Giannessi E, Cozzi B (2018) The catecholaminergic innervation of the claustrum of the pig. J Anat 232:158–166. https://doi.org/10.1111/joa.12706
Google Scholar
Miller SM, Kalanjati VP, Colditz PB, Björkman ST (2017) developmental changes in expression of GABAA receptor subunits alpha1, alpha2, and alpha3 in the pig brain. Dev Neurosci 39:375–385. https://doi.org/10.1159/000468926
Google Scholar
Simchick G, Shen A, Campbell B, Park HJ, West FD, Zhao Q (2019) Pig brains have homologous resting-state networks with human brains. Brain Connect 9:566–579. https://doi.org/10.1089/brain.2019.0673
Google Scholar
Vrselja Z, Daniele SG, Silbereis J, Talpo F, Morozov YM, Sousa AMM, Tanaka BS, Skarica M, Pletikos M, Kaur N, Zhuang ZW, Liu Z, Alkawadri R, Sinusas AJ, Latham SR, Waxman SG, Sestan N (2019) Restoration of brain circulation and cellular functions hours post-mortem. Nature 568:336–343. https://doi.org/10.1038/s41586-019-1099-1
Google Scholar
Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, Oksvold P, Edfors F, Limiszewska A, Hikmet F, Huang J, Du Y, Lin L, Dong Z, Yang L, Liu X, Jiang H, Xu X, Wang J, Yang H, Bolund L, Mardinoglu A, Zhang C, von Feilitzen K, Lindskog C, Pontén F, Luo Y, Hökfelt T, Uhlén M, Mulder J (2020) An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 367:eaay5947. https://doi.org/10.1126/science.aay5947
Google Scholar
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Proteomics. Tissue-based map of the human proteome. Science. 347:1260419. https://doi.org/10.1126/science.1260419
Google Scholar
Pollen AA, Bhaduri A, Andrews MG, Nowakowski TJ, Meye(rson OS, Mostajo-Radji MA, Di. Lullo E, Alvarado B, Bedolli M, Dougherty ML, Fiddes IT, Kronenberg ZN, Shuga J, Leyrat AA, West JA, Bershteyn M, Lowe CB, Pavlovic BJ, Salama SR, Haussler D, Eichler EE, Kriegstein AR, (2019) Establishing cerebral organoids as models of human-specific brain evolution. Cell 176:743-756.e17. https://doi.org/10.1016/j.cell.2019.01.017
Google Scholar
Kanton S, Boyle MJ, He Z, Santel M, Weigert A, Sanchís-Calleja F, Guijarro P, Sidow L, Fleck JS, Han D, Qian Z, Heide M, Huttner WB, Khaitovich P, Pääbo S, Treutlein B, Camp JG (2019) Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574:418–422. https://doi.org/10.1038/s41586-019-1654-9
Google Scholar
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501:373–379. https://doi.org/10.1038/nature12517
Google Scholar
Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9:2329–2340. https://doi.org/10.1038/nprot.2014.158
Google Scholar
Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125. https://doi.org/10.1126/science.1247125
Google Scholar
Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53. https://doi.org/10.1093/cercor/12.1.37
Google Scholar
Dehay C, Kennedy H, Kosik KS (2015) The outer subventricular zone and primate-specific cortical complexification. Neuron 85:683–694. https://doi.org/10.1016/j.neuron.2014.12.060
Google Scholar
Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, Yao B, Hamersky GR, Jacob F, Zhong C, Yoon KJ, Jeang W, Lin L, Li Y, Thakor J, Berg DA, Zhang C, Kang E, Chickering M, Nauen D, Ho CY, Wen Z, Christian KM, Shi PY, Maher BJ, Wu H, Jin P, Tang H, Song H, Ming GL (2016) Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165:1238–1254. https://doi.org/10.1016/j.cell.2016.04.032
Google Scholar
Qian X, Song H, Ming GL (2019) Brain organoids: advances, applications and challenges. Development 146:dev166074. https://doi.org/10.1242/dev.166074
Google Scholar
Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, Sasai Y (2013) Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci USA 110:20284–20289. https://doi.org/10.1073/pnas.1315710110
Google Scholar
Velasco S, Kedaigle AJ, Simmons SK, Nash A, Rocha M, Quadrato G, Paulsen B, Nguyen L, Adiconis X, Regev A, Levin JZ, Arlotta P (2019) Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570:523–527. https://doi.org/10.1038/s41586-019-1289-x
Google Scholar
Bagley JA, Reumann D, Bian S, Lévi-Strauss J, Knoblich JA (2017) Fused cerebral organoids model interactions between brain regions. Nat Methods 14:743–751. https://doi.org/10.1038/nmeth.4304
Google Scholar
Kadoshima T, Sakaguchi H, Eiraku M (2017) Generation of various telencephalic regions from human embryonic stem cells in three-dimensional culture. Methods Mol Biol 1597:1–16. https://doi.org/10.1007/978-1-4939-6949-4_1
Google Scholar
Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y (2015) Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 10:537–550. https://doi.org/10.1016/j.celrep.2014.12.051
Google Scholar
Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, Amenduni M, Szekely A, Palejev D, Wilson M, Gerstein M, Grigorenko EL, Chawarska K, Pelphrey KA, Howe JR, Vaccarino FM (2015) FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162:375–390. https://doi.org/10.1016/j.cell.2015.06.034
Google Scholar
Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, Takahashi J, Eiraku M, Sasai Y (2015) Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun 6:8896. https://doi.org/10.1038/ncomms9896
Google Scholar
Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL (2018) Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc 13:565–580. https://doi.org/10.1038/nprot.2017.152
Google Scholar
Ozone C, Suga H, Eiraku M, Kadoshima T, Yonemura S, Takata N, Oiso Y, Tsuji T, Sasai Y (2016) Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells. Nat Commun 7:10351. https://doi.org/10.1038/ncomms10351
Google Scholar
Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, Otani T, Livesey FJ, Knoblich JA (2017) Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 35:659–666. https://doi.org/10.1038/nbt.3906
Google Scholar
Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster MA (2020) Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 369:eaaz5626. https://doi.org/10.1126/science.aaz5626
Google Scholar
Xiang Y, Tanaka Y, Patterson B, Kang YJ, Govindaiah G, Roselaar N, Cakir B, Kim KY, Lombroso AP, Hwang SM, Zhong M, Stanley EG, Elefanty AG, Naegele JR, Lee SH, Weissman SM, Park IH (2017) Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21:383-398.e7. https://doi.org/10.1016/j.stem.2017.07.007
Google Scholar
Camp JG, Platt R, Treutlein B (2019) Mapping human cell phenotypes to genotypes with single-cell genomics. Science 365:1401–1405. https://doi.org/10.1126/science.aax6648
Google Scholar
Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M, Lewitus E, Sykes A, Hevers W, Lancaster M, Knoblich JA, Lachmann R, Pääbo S, Huttner WB, Treutlein B (2015) Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci USA 112:15672–15677. https://doi.org/10.1073/pnas.1520760112
Google Scholar
Velasco S, Paulsen B, Arlotta P (2020) 3D brain organoids: studying brain development and disease outside the embryo. Annu Rev Neurosci 43:375–389. https://doi.org/10.1146/annurev-neuro-070918-050154
Google Scholar
Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, Wang A, Wu W, Haddad GG, Chaim IA, Domissy A, Vandenberghe M, Devor A, Yeo GW, Voytek B, Muotri AR (2019) Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25:558–569. https://doi.org/10.1016/j.stem.2019.08.002
Google Scholar
Reardon S (2018) Lab-grown “mini brains” produce electrical patterns that resemble those of premature babies. Nature 563:453. https://doi.org/10.1038/d41586-018-07402-0
Google Scholar
Di Lullo E, Kriegstein AR (2017) The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci 18:573–584. https://doi.org/10.1038/nrn.2017.107
Google Scholar
Arlotta P (2018) Organoids required! A new path to understanding human brain development and disease. Nat Methods 15:27–29. https://doi.org/10.1038/nmeth.4557
Google Scholar
Wang P, Mokhtari R, Pedrosa E, Kirschenbaum M, Bayrak C, Zheng D, Lachman HM (2017) CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in cerebral organoids derived from iPS cells. Mol Autism 8:11. https://doi.org/10.1186/s13229-017-0124-1
Google Scholar
Chan WK, Griffiths R, Price DJ, Mason JO (2020) Cerebral organoids as tools to identify the developmental roots of autism. Mol Autism 11:58. https://doi.org/10.1186/s13229-020-00360-3
Google Scholar
Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, Nascimento JM, Brindeiro R, Tanuri A, Rehen SK (2016) Zika virus impairs growth in human neurospheres and brain organoids. Science 352:816–818. https://doi.org/10.1126/science.aaf6116
Google Scholar
Bershteyn M, Nowakowski TJ, Pollen AA, Di Lullo E, Nene A, Wynshaw-Boris A, Kriegstein AR (2017) Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20:435-449.e4. https://doi.org/10.1016/j.stem.2016.12.007
Google Scholar
Iefremova V, Manikakis G, Krefft O, Jabali A, Weynans K, Wilkens R, Marsoner F, Brändl B, Müller FJ, Koch P, Ladewig J (2017) An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller-Dieker syndrome. Cell Rep 19:50–59. https://doi.org/10.1016/j.celrep.2017.03.047
Google Scholar
Kim H, Park HJ, Choi H, Chang Y, Park H, Shin J, Kim J, Lengner CJ, Lee YK, Kim J (2019) Modeling G2019S-LRRK2 sporadic Parkinson’s disease in 3D midbrain organoids. Stem Cell Rep 12:518–531. https://doi.org/10.1016/j.stemcr.2019.01.020
Google Scholar
Monzel AS, Smits LM, Hemmer K, Hachi S, Moreno EL, van Wuellen T, Jarazo J, Walter J, Brüggemann I, Boussaad I, Berger E, Fleming RMT, Bolognin S, Schwamborn JC (2017) Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Rep 8:1144–1154. https://doi.org/10.1016/j.stemcr.2017.03.010
Google Scholar
Schwamborn JC (2018) Is Parkinson’s disease a neurodevelopmental disorder and will brain organoids help us to understand it? Stem Cells Dev 27:968–975. https://doi.org/10.1089/scd.2017.0289
Google Scholar
Gonzalez C, Armijo E, Bravo-Alegria J, Becerra-Calixto A, Mays CE, Soto C (2018) Modeling amyloid beta and tau pathology in human cerebral organoids. Mol Psychiatry 23:2363–2374. https://doi.org/10.1038/s41380-018-0229-8
Google Scholar
Nzou G, Wicks RT, VanOstrand NR, Mekky GA, Seale SA, El-Taibany A, Wicks EE, Nechtman CM, Marrotte EJ, Makani VS, Murphy SV, Seeds MC, Jackson JD, Atala AJ (2020) Multicellular 3D neurovascular unit model for assessing hypoxia and neuroinflammation induced blood-brain barrier dysfunction. Sci Rep 10:9766. https://doi.org/10.1038/s41598-020-66487-8
Google Scholar
Wang SN, Wang Z, Xu TY, Cheng MH, Li WL, Miao CY (2020) Cerebral organoids repair ischemic stroke brain injury. Transl Stroke Res 11:983–1000. https://doi.org/10.1007/s12975-019-00773-0
Google Scholar
Ogawa J, Pao GM, Shokhirev MN, Verma IM (2018) Glioblastoma model using human cerebral organoids. Cell Rep 23:1220–1229. https://doi.org/10.1016/j.celrep.2018.03.105
Google Scholar
Linkous A, Balamatsias D, Snuderl M, Edwards L, Miyaguchi K, Milner T, Reich B, Cohen-Gould L, Storaska A, Nakayama Y, Schenkein E, Singhania R, Cirigliano S, Magdeldin T, Lin Y, Nanjangud G, Chadalavada K, Pisapia D, Liston C, Fine HA (2019) Modeling patient-derived glioblastoma with cerebral organoids. Cell Rep 26:3203-3211.e5. https://doi.org/10.1016/j.celrep.2019.02.063
Google Scholar
Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S, Liu DA, Qian X, Petrov D, Lucas T, Chen HI, Dorsey JF, Christian KM, Binder ZA, Nasrallah M, Brem S, O’Rourke DM, Ming GL, Song H (2020) A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180:188-204.e22. https://doi.org/10.1016/j.cell.2019.11.036
Google Scholar
Antonucci J, Gehrke L (2019) Cerebral organoid models for neurotropic viruses. ACS Infect Dis 5:1976–1979. https://doi.org/10.1021/acsinfecdis.9b00339
Google Scholar
Metsky HC, Matranga CB, Wohl S, Schaffner SF, Freije CA, Winnicki SM, West K, Qu J, Baniecki ML, Gladden-Young A, Lin AE, Tomkins-Tinch CH, Ye SH, Park DJ, Luo CY, Barnes KG, Shah RR, Chak B, Barbosa-Lima G, Delatorre E, Vieira YR, Paul LM, Tan AL, Barcellona CM, Porcelli MC, Vasquez C, Cannons AC, Cone MR, Hogan KN, Kopp EW et al (2017) Zika virus evolution and spread in the Americas. Nature 546:411–415. https://doi.org/10.1038/nature22402
Google Scholar
Qian X, Nguyen HN, Jacob F, Song H, Ming GL (2017) Using brain organoids to understand Zika virus-induced microcephaly. Development 144:952–957. https://doi.org/10.1242/dev.140707
Google Scholar
Xu M, Lee EM, Wen Z, Cheng Y, Huang WK, Qian X, Tcw J, Kouznetsova J, Ogden SC, Hammack C, Jacob F, Nguyen HN, Itkin M, Hanna C, Shinn P, Allen C, Michael SG, Simeonov A, Huang W, Christian KM, Goate A, Brennand KJ, Huang R, Xia M, Ming GL, Zheng W, Song H, Tang H (2016) Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 22:1101–1107. https://doi.org/10.1038/nm.4184
Google Scholar
Brnic D, Stevanovic V, Cochet M, Agier C, Richardson J, Montero-Menei CN, Milhavet O, Eloit M, Coulpier M (2012) Borna disease virus infects human neural progenitor cells and impairs neurogenesis. J Virol 86:2512–2522. https://doi.org/10.1128/JVI.05663-11
Google Scholar
Scordel C, Huttin A, Cochet-Bernoin M, Szelechowski M, Poulet A, Richardson J, Benchoua A, Gonzalez-Dunia D, Eloit M, Coulpier M (2015) Apr. Borna disease virus phosphoprotein impairs the developmental program controlling neurogenesis and reduces human GABAergic neurogenesis. PLoS Pathog 11:e1004859. doi: https://doi.org/10.1371/journal.ppat.1004859
Brown RM, Rana PSJB, Jaeger HK, O’Dowd JM, Balemba OB, Fortunato EA (2019) Human Cytomegalovirus compromises development of cerebral organoids. J Virol 93:e00957-e1019. https://doi.org/10.1128/JVI.00957-19
Google Scholar
Zhang B, He Y, Xu Y, Mo F, Mi T, Shen QS, Li C, Li Y, Liu J, Wu Y, Chen G, Zhu W, Qin C, Hu B, Zhou G (2018) Differential antiviral immunity to Japanese encephalitis virus in developing cortical organoids. Cell Death Dis 9:719. https://doi.org/10.1038/s41419-018-0763-y
Google Scholar
D’Aiuto L, Bloom DC, Naciri JN, Smith A, Edwards TG, McClain L, Callio JA, Jessup M, Wood J, Chowdari K, Demers M, Abrahamson EE, Ikonomovic MD, Viggiano L, De Zio R, Watkins S, Kinchington PR, Nimgaonkar VL (2019) Modeling herpes simplex virus 1 infections in human central nervous system neuronal cells using two- and three-dimensional cultures derived from induced pluripotent stem cells. J Virol 93:e00111-e119. https://doi.org/10.1128/JVI.00111-19
Google Scholar
Zheng W, Klammer AM, Naciri JN, Yeung J, Demers M, Milosevic J, Kinchington PR, Bloom DC, Nimgaonkar VL, D’Aiuto L (2020) Patterns of herpes simplex virus 1 infection in neural progenitor cells. J Virol 94:e00994-e1020. https://doi.org/10.1128/JVI.00994-20
Google Scholar
Ashraf GM, Tarasov VV, Makhmutova A, Chubarev VN, Avila-Rodriguez M, Bachurin SO, Aliev G (2019) The possibility of an infectious etiology of Alzheimer disease. Mol Neurobiol 56:4479–4491. https://doi.org/10.1007/s12035-018-1388-y
Google Scholar
Ramani A, Müller L, Niklas Ostermann P, Gabriel E, Abida-Islam P, Müller-Schiffmann A, Mariappan A, Goureau O, Gruell H, Walker A, Andrée M, Hauka S, Houwaart T, Dilthey A, Wohlgemuth K, Omran H, Klein F, Wieczorek D, Adams O, Timm J, Korth C, Schaal H, Gopalakrishnan J (2020) SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 2:e2020106230. https://doi.org/10.15252/embj.2020106230
Google Scholar
Song E, Zhang C, Israelow B, Lu-Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti-Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Jaffar Kazmi SA, Zhang K, Wilen CB, Horvath TL, Plu I et al (2021) Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 218:e20202135. https://doi.org/10.1084/jem.20202135
Google Scholar
Jacob F, Pather SR, Huang WK, Wong SZH, Zhou H, Zhang F, Cubitt B, Chen CZ, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, de Torre JC, Ming GL (2020) Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism. bioRxiv. https://doi.org/10.1101/2020.07.28.225151
Google Scholar
Bullen CK, Hogberg HT, Bahadirli-Talbott A, Bishai WR, Hartung T, Keuthan C, Looney MM, Pekosz A, Romero JC, Sillé FCM, Um P, Smirnova L (2020) Infectability of human BrainSphere neurons suggests neurotropism of SARS-CoV-2. Altex 37:665–671. https://doi.org/10.14573/altex.2006111
Google Scholar
Groveman BR, Foliaki ST, Orru CD, Zanusso G, Carroll JA, Race B, Haigh CL (2019) Sporadic Creutzfeldt-Jakob disease prion infection of human cerebral organoids. Acta Neuropathol Commun 7:90. https://doi.org/10.1186/s40478-019-0742-2
Google Scholar
Foliaki ST, Groveman BR, Yuan J, Walters R, Zhang S, Tesar P, Zou W, Haigh CL (2020) Pathogenic prion protein isoforms are not present in cerebral organoids generated from asymptomatic donors carrying the E200K mutation associated with familial prion disease. Pathogens 9:482. https://doi.org/10.3390/pathogens9060482
Google Scholar
Koh S, Piedrahita JA (2014) From “ES-like” cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology 81:103–111. https://doi.org/10.1016/j.theriogenology.2013.09.009
Google Scholar
Ezashi T, Yuan Y, Roberts RM (2016) Pluripotent stem cells from domesticated mammals. Annu Rev Anim Biosci 4:223–253. https://doi.org/10.1146/annurev-animal-021815-111202
Google Scholar
Pain B, Clark ME, Shen M, Nakazawa H, Sakurai M, Samarut J, Etches RJ (1996) Long-term in vitro culture and characterisation of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122:2339–2348
Google Scholar
Aubel P, Pain B (2013) Chicken embryonic stem cells: establishment and characterization. Methods Mol Biol 1074:137–150. https://doi.org/10.1007/978-1-62703-628-3_11
Google Scholar
Fuet A, Montillet G, Jean C, Aubel P, Kress C, Rival-Gervier S, Pain B (2018) NANOG is required for the long-term establishment of avian somatic reprogrammed cells. Stem Cell Rep 11:1272–1286. https://doi.org/10.1016/j.stemcr.2018.09.005
Google Scholar
Honda A, Hatori M, Hirose M, Honda C, Izu H, Inoue K, Hirasawa R, Matoba S, Togayachi S, Miyoshi H, Ogura A (2013) Naive-like conversion overcomes the limited differentiation capacity of induced pluripotent stem cells. J Biol Chem 288:26157–26166. https://doi.org/10.1074/jbc.M113.502492
Google Scholar
Osteil P, Tapponnier Y, Markossian S, Godet M, Schmaltz-Panneau B, Jouneau L, Cabau C, Joly T, Blachère T, Gócza E, Bernat A, Yerle M, Acloque H, Hidot S, Bosze Z, Duranthon V, Savatier P, Afanassieff M (2013) Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naïve pluripotency. Biol Open 2:613–628. https://doi.org/10.1242/bio.20134242
Google Scholar
Liu J, Balehosur D, Murray B, Kelly JM, Sumer H, Verma PJ (2012) Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 77:338–46.e1. https://doi.org/10.1016/j.theriogenology.2011.08.006
Google Scholar
Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verma PJ (2011) NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89:2708–2716. https://doi.org/10.2527/jas.2010-3666
Google Scholar
Bogliotti YS, Wu J, Vilarino M, Okamura D, Soto DA, Zhong C, Sakurai M, Sampaio RV, Suzuki K, Izpisua Belmonte JC, Ross PJ (2018) Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc Natl Acad Sci USA 115:2090–2095. https://doi.org/10.1073/pnas.1716161115
Google Scholar
Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci USA 106:10993–10998. https://doi.org/10.1073/pnas.0905284106
Google Scholar
Rodríguez A, Allegrucci C, Alberio R (2012) Modulation of pluripotency in the porcine embryo and iPS cells. PLoS One 7:e49079. https://doi.org/10.1371/journal.pone.0049079
Google Scholar
Congras A, Barasc H, Canale-Tabet K, Plisson-Petit F, Delcros C, Feraud O, Oudrhiri N, Hadadi E, Griscelli F, Bennaceur-Griscelli A, Turhan A, Afanassieff M, Ferchaud S, Pinton A, Yerle-Bouissou M, Acloque H (2016) Non integrative strategy decreases chromosome instability and improves endogenous pluripotency genes reactivation in porcine induced pluripotent-like stem cells. Sci Rep 6:27059. https://doi.org/10.1038/srep27059
Google Scholar
Gao X, Nowak-Imialek M, Chen X, Chen D, Herrmann D, Ruan D, Chen ACH, Eckersley-Maslin MA, Ahmad S, Lee YL, Kobayashi T, Ryan D, Zhong J, Zhu J, Wu J, Lan G, Petkov S, Yang J, Antunes L, Campos LS, Fu B, Wang S, Yong Y, Wang X, Xue SG, Ge L, Liu Z, Huang Y, Nie T, Li P et al (2019) Establishment of porcine and human expanded potential stem cells. Nat Cell Biol 21:687–699. https://doi.org/10.1038/s41556-019-0333-2
Google Scholar
Shimada H, Nakada A, Hashimoto Y, Shigeno K, Shionoya Y, Nakamura T (2010) Generation of canine induced pluripotent stem cells by retroviral transduction and chemical inhibitors. Mol Reprod Dev 77:2. https://doi.org/10.1002/mrd.21117
Google Scholar
Nagy K, Sung HK, Zhang P, Laflamme S, Vincent P, Agha-Mohammadi S, Woltjen K, Monetti C, Michael IP, Smith LC, Nagy A (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev Rep 7:693–702. https://doi.org/10.1007/s12015-011-9239-5
Google Scholar
Breton A, Sharma R, Diaz AC, Parham AG, Graham A, Neil C, Whitelaw BC, Milne E, Donadeu FX (2013) Derivation and characterization of induced pluripotent stem cells from equine fibroblasts. Stem Cells Dev 22:611–621. https://doi.org/10.1089/scd.2012.0052
Google Scholar
Pain B (2021) Organoids in domestic animals: with which stem cells? Vet Res 52:38. https://doi.org/10.1186/s13567-021-00911-3
Google Scholar
Banyard AC, Evans JS, Luo TR, Fooks AR (2014) Lyssaviruses and bats: emergence and zoonotic threat. Viruses 6:2974–2990. https://doi.org/10.3390/v6082974
Google Scholar
Green SL (1997) Rabies. Vet Clin North Am Equine Pract 13:1–11. https://doi.org/10.1016/s0749-0739(17)30251-1
Google Scholar
Rodríguez LL (2002) Emergence and re-emergence of vesicular stomatitis in the United States. Virus Res 85:211–219. https://doi.org/10.1016/s0168-1702(02)00026-6
Google Scholar
Kumar B, Manuja A, Gulati BR, Virmani N, Tripathi BN (2018) Zoonotic viral diseases of equines and their impact on human and animal health. Open Virol J 12:80–98. https://doi.org/10.2174/1874357901812010080
Google Scholar
Desole G, Sinigaglia A, Riccetti S, Masi G, Pacenti M, Trevisan M, Barzon L (2019) Modelling neurotropic Flavivirus infection in human induced pluripotent stem cell-derived systems. Int J Mol Sci 20:5404. https://doi.org/10.3390/ijms20215404
Google Scholar
Jeffries CL, Mansfield KL, Phipps LP, Wakeley PR, Mearns R, Schock A, Bell S, Breed AC, Fooks AR, Johnson N (2014) Louping ill virus: an endemic tick-borne disease of Great Britain. J Gen Virol 95:1005–1014. https://doi.org/10.1099/vir.0.062356-0
Google Scholar
Lecollinet S, Pronost S, Coulpier M, Beck C, Gonzalez G, Leblond A, Tritz P (2019) Viral equine encephalitis, a growing threat to the horse population in Europe? Viruses 12:23. https://doi.org/10.3390/v12010023
Google Scholar
Wang LF, Anderson DE (2019) Viruses in bats and potential spillover to animals and humans. Curr Opin Virol 34:79–89. https://doi.org/10.1016/j.coviro.2018.12.007
Google Scholar
Weatherman S, Feldmann H, de Wit E (2018) Transmission of henipaviruses. Curr Opin Virol 28:7–11. https://doi.org/10.1016/j.coviro.2017.09.004
Google Scholar
Conraths FJ, Kämer D, Teske K, Hoffmann B, Mettenleiter TC, Beer M (2013) Reemerging Schmallenberg virus infections, Germany, 2012. Emerg Infect Dis 19:513–514. https://doi.org/10.3201/eid1903.121324
Google Scholar
Oladunni FS, Horohov DW, Chambers TM (2019) EHV-1: A constant threat to the horse industry. Front Microbiol 10:2668. https://doi.org/10.3389/fmicb.2019.02668
Google Scholar
Dong B, Lu H, Zhao K, Liu W, Gao W, Lan Y, Zhao J, Tang B, Song D, He W, Gao F (2014) Identification and genetic characterization of porcine hemagglutinating encephalomyelitis virus from domestic piglets in China. Arch Virol 159:2329–2337
Google Scholar
Hubálek Z, Rudolf I, Nowotny N (2014) Arboviruses pathogenic for domestic and wild animals. Adv Virus Res 89:201–275. https://doi.org/10.1016/B978-0-12-800172-1.00005-7
Google Scholar
Fortuna PRJ, Bielefeldt-Ohmann H, Ovchinnikov DA, Wolvetang EJ, Whitworth DJ (2018) Cortical neurons derived from equine induced pluripotent stem cells are susceptible to neurotropic Flavivirus infection and replication: an in vitro model for equine neuropathic diseases. Stem Cells Dev 27:704–715. https://doi.org/10.1089/scd.2017.0106
Google Scholar
Bedenice D, Johnson AL (2018) Neurologic conditions affecting the equine athlete. Vet Clin North Am Equine Pract 34:277–297. https://doi.org/10.1016/j.cveq.2018.04.006
Google Scholar
Vikartovska Z, Farbakova J, Smolek T, Hanes J, Zilka N, Hornakova L, Humenik F, Maloveska M, Hudakova N, Cizkova D (2021) Novel diagnostic tools for identifying cognitive impairment in dogs: behavior, biomarkers, and pathology. Front Vet Sci 7:551895. https://doi.org/10.3389/fvets.2020.551895
Google Scholar
Hicks J, Platt S, Kent M, Haley A (2017) Canine brain tumours: a model for the human disease? Vet Comp Oncol 15:252–272. https://doi.org/10.1111/vco.12152
Google Scholar
Fietz SA, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13:690–699. https://doi.org/10.1038/nn.2553
Google Scholar
Beaumont M, Blanc F, Cherbuy C, Egidy G, Giuffra E, Lacroix-Lamandé S, Wiedemann A (2021) Intestinal organoids in farm animals. Vet Res 52:33. https://doi.org/10.1186/s13567-021-00909-x
Google Scholar
Seto Y, Eiraku M (2019) Toward the formation of neural circuits in human brain organoids. Curr Opin Cell Biol 61:86–91. https://doi.org/10.1016/j.ceb.2019.07.010
Google Scholar
Pașca SP (2018) The rise of three-dimensional human brain cultures. Nature 553:437–445. https://doi.org/10.1038/nature25032
Google Scholar
Paşca SP (2019) Assembling human brain organoids. Science 363:126–127. https://doi.org/10.1126/science.aau5729
Google Scholar
Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD (2013) Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 14:755–769. https://doi.org/10.1038/nrn3586
Google Scholar
Pham MT, Pollock KM, Rose MD, Cary WA, Stewart HR, Zhou P, Nolta JA, Waldau B (2018) Generation of human vascularized brain organoids. Neuro Report 29:588–593. https://doi.org/10.1097/WNR.0000000000001014
Google Scholar
Ham O, Jin YB, Kim J, Lee MO (2020) Blood vessel formation in cerebral organoids formed from human embryonic stem cells. Biochem Biophys Res Commun 521:84–90. https://doi.org/10.1016/j.bbrc.2019.10.079
Google Scholar
Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, Johnston S, Parylak SL, Jin X, Gage FH (2018) An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol 36:432–441. https://doi.org/10.1038/nbt.4127
Google Scholar
Varrault A, Journot L, Bouschet T (2019) Cerebral cortex generated from pluripotent stem cells to model corticogenesis and rebuild cortical circuits: in vitro veritas? Stem Cells Dev 28:361–369. https://doi.org/10.1089/scd.2018.0233
Google Scholar
Chen HI, Wolf JA, Blue R, Song MM, Moreno JD, Ming GL, Song H (2019) Transplantation of human brain organoids: revisiting the science and ethics of brain chimeras. Cell Stem Cell 25:462–472. https://doi.org/10.1016/j.stem.2019.09.002
Google Scholar
Lehmann R, Lee CM, Shugart EC, Benedetti M, Charo RA, Gartner Z, Hogan B, Knoblich J, Nelson CM, Wilson KM (2019) Human organoids: a new dimension in cell biology. Mol Biol Cell 30:1129–1137. https://doi.org/10.1091/mbc.E19-03-0135
Google Scholar
Hyun I, Scharf-Deering JC, Lunshof JE (2020) Ethical issues related to brain organoid research. Brain Res 1732:146653. https://doi.org/10.1016/j.brainres.2020.146653
Google Scholar