Barnes ME, Brown ML (2011) A review of Flavobacterium psychrophilum biology, clinical signs, and bacterial cold water disease prevention and treatment. Open Fish Sci J 4:40–48
Article
Google Scholar
Gómez E, Méndez J, Cascales D, Guijarro JA (2014) Flavobacterium psychrophilum vaccine development: a difficult task. Microb Biotechnol 7:414–423
Article
PubMed
PubMed Central
Google Scholar
Del Cerro A, Márquez I, Prieto J (2010) Genetic diversity and antimicrobial resistance of Flavobacterium psychrophilum isolated from cultured rainbow trout, Onchorynchus mykiss (Walbaum), in Spain. J Fish Dis 33:285–291
Article
PubMed
Google Scholar
Henríquez-Núñez H, Evrard O, Kronvall G, Avendaño-Herrera R (2012) Antimicrobial susceptibility and plasmid profiles of Flavobacterium psychrophilum strains isolated in Chile. Aquaculture 354:38–44
Article
Google Scholar
Verner-Jeffreys DW, Taylor NJ (2015) Review of freshwater treatments used in the Scottish freshwater rainbow trout aquaculture industry. Scottish Aquaculture Research Forum Report SARF10 Centre for Environment Fisheries & Aquaculture Science (Cefas) Weymouth 2015
Makesh M, Sudheesh PS, Cain KD (2015) Systemic and mucosal immune response of rainbow trout to immunization with an attenuated Flavobacterium psychrophilum vaccine strain by different routes. Fish Shellfish Immunol 44:156–163
CAS
Article
PubMed
Google Scholar
Johnson K, Flynn J, Amend D (1982) Onset of immunity in salmonid fry vaccinated by direct immersion in Vibrio anguillarum and Yersinia ruckeri bacterins. J Fish Dis 5:197–205
Article
Google Scholar
Ngo TPH, Bartie KL, Thompson KD, Verner-Jeffreys DW, Hoare R, Adams A (2017) Genetic and serological diversity of Flavobacterium psychrophilum isolates from salmonids in United Kingdom. Vet Microbiol 201:216–224
Article
PubMed
Google Scholar
Madetoja J, Nyman P, Wiklund T (2000) Flavobacterium psychrophilum, invasion into and shedding by rainbow trout Oncorhynchus mykiss. Dis Aquat Org 43:27–38
CAS
Article
PubMed
Google Scholar
Long A, Fehringer TR, LaFrentz BR, Call DR, Cain KD (2014) Development of a waterborne challenge model for Flavobacterium psychrophilum. FEMS Microbiol Lett 359:154–160
CAS
Article
PubMed
Google Scholar
Fredriksen BN, Furevik A, Gauthier D, Egenberg M, Paulsen ED, Brudeseth B (2013) Intramuscular challenge of rainbow trout (Oncorhynchus mykiss) with two Norwegian field strains of Flavobacterium psychrophilum. Fish Shellfish Immunol 35:595–598
Article
PubMed
Google Scholar
Decostere A, Lammens M, Haesebrouck F (2000) Difficulties in experimental infection studies with Flavobacterium psychrophilum in rainbow trout (Oncorhynchus mykiss) using immersion, oral and anal challenges. Res Vet Sci 69:165–169
CAS
Article
PubMed
Google Scholar
Garcia C, Pozet F, Michel C (2000) Standardisation of experimental infection with Flavobacterium psychrophilum, the agent of rainbow trout Oncorhynchus mykiss fry syndrome. Dis Aquat Organ 42:191–197
CAS
Article
PubMed
Google Scholar
Henriksen MMM, Madsen L, Dalsgaard I (2013) Effect of hydrogen peroxide on immersion challenge of rainbow trout fry with Flavobacterium psychrophilum. PLoS One 8:e62590
CAS
Article
PubMed
PubMed Central
Google Scholar
Toyama T, Kita-Tsukamoto K, Wakabayashi H (1994) Identification of Cytophaga psychrophila by PCR targeted 16 S ribosomal RNA. Fish Pathol 29:271–275
CAS
Article
Google Scholar
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408
CAS
Article
PubMed
Google Scholar
Ingerslev H, Pettersen EF, Jakobsen RA, Petersen CB, Wergeland HI (2006) Expression profiling and validation of reference gene candidates in immune relevant tissues and cells from Atlantic salmon (Salmo salar L.). Mol Immunol 43:1194–1201
CAS
Article
PubMed
Google Scholar
von Gersdorff Jørgensen L, Heinecke RD, Skjødt K, Rasmussen KJ, Buchmann K (2011) Experimental evidence for direct in situ binding of IgM and IgT to early trophonts of Ichthyophthirius multifiliis (Fouquet) in the gills of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 34:749–755
Article
Google Scholar
Palm RC Jr, Landolt ML, Busch RA (1998) Route of vaccine administration: effects on the specific humoral response in rainbow trout Oncorhynchus mykiss. Dis Aquat Organ 33:157–166
Article
PubMed
Google Scholar
Zhang Y, Salinas I, Li J, Parra D, Bjork S, Xu Z et al (2010) IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nat Immunol 11:827–835
CAS
Article
PubMed
PubMed Central
Google Scholar
Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481
Article
Google Scholar
Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV et al (1977) Design and analysis of randomized clinical trials requiring prolonged observation of each patient. II. analysis and examples. Br J Cancer 35:1–39
CAS
Article
PubMed
PubMed Central
Google Scholar
Amend DF (1981) Potency testing of fish vaccines. Dev Biol Stand 49:447–454
Google Scholar
Munang’andu H, Mutoloki S, Evensen Ø (2015) A review of the immunological mechanisms following mucosal vaccination of finfish. Front Immunol 6:427
PubMed
PubMed Central
Google Scholar
Obach A, Laurencin FB (1991) Vaccination of rainbow trout Oncorhynchus mykiss against the visceral form of coldwater disease. Dis Aquat Org 12:13–15
Article
Google Scholar
LaFrentz BR, LaPatra SE, Jones GR, Cain KD (2003) Passive immunization of rainbow trout, Oncorhynchus mykiss (Walbaum), against Flavobacterium psychrophilum, the causative agent of bacterial coldwater disease and rainbow trout fry syndrome. J Fish Dis 26:377–384
Article
Google Scholar
LaFrentz BR, LaPatra SE, Call DR, Cain KD (2008) Isolation of rifampicin resistant Flavobacterium psychrophilum strains and their potential as live attenuated vaccine candidates. Vaccine 26:5582–5589
CAS
Article
PubMed
Google Scholar
Lorenzen E, Brudeseth B, Wiklund T, Lorenzen N (2010) Immersion exposure of rainbow trout (Oncorhynchus mykiss) fry to wildtype Flavobacterium psychrophilum induces no mortality, but protects against later intraperitoneal challenge. Fish Shellfish Immunol 28:440–444
CAS
Article
PubMed
Google Scholar
Lumsden JS, Ostland VE, MacPhee DD, Ferguson HW (1995) Production of gill-associated and serum antibody byrainbow trout (Oncorhynchus mykiss) following immersion immunization with acetone-killed Flavobacterium branchiophilum and the relationship to protection from experimental challenge. Fish Shellfish Immunol 5:151–165
Article
Google Scholar
Chettri JK, Jaafar RM, Skov J, Kania PW, Dalsgaard I, Buchmann K (2015) Booster immersion vaccination using diluted Yersinia ruckeri bacterin confers protection against ERM in rainbow trout. Aquaculture 440:1–5
CAS
Article
Google Scholar
Deshmukh S, Kania PW, Chettri JK, Skov J, Bojesen AM, Dalsgaard I et al (2013) Insight from molecular, pathological, and immunohistochemical studies on cellular and humoral mechanisms responsible for vaccine-induced protection of rainbow trout against Yersinia ruckeri. Clin Vaccine Immunol 20:1623–1641
CAS
Article
PubMed
PubMed Central
Google Scholar
Madsen L, Dalsgaard I (1999) Reproducible methods for experimental infection with Flavobacterium psychrophilum in rainbow trout Oncorhynchus mykiss. Dis Aquat Org 36:169–176
CAS
Article
PubMed
Google Scholar
Martínez JL, Casado A, Enríquez R (2004) Experimental infection of Flavobacterium psychrophilum in fins of Atlantic salmon Salmo salar revealed by scanning electron microscopy. Dis Aquat Org 59:79–84
Article
PubMed
Google Scholar
Henriksen MMM, Kania PW, Buchmann K, Dalsgaard I (2015) Effect of hydrogen peroxide and/or Flavobacterium psychrophilum on the gills of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 38:259–270
CAS
Article
PubMed
Google Scholar
Khimmakthong U, Deshmukh S, Chettri JK, Bojesen AM, Kania PW, Dalsgaard I et al (2013) Tissue specific uptake of inactivated and live Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss): visualization by immunohistochemistry and in situ hybridization. Microb Pathog 59–60:33–41
Article
PubMed
Google Scholar
Rombout JHWM, Abelli L, Picchietti S, Scapigliati G, Kiron V (2011) Teleost intestinal immunology. Fish Shellfish Immunol 31:616–626
CAS
Article
PubMed
Google Scholar
Liu X, Wu H, Chang X, Tang Y, Liu Q, Zhang Y (2014) Notable mucosal immune responses induced in the intestine of zebrafish (Danio rerio) bath-vaccinated with a live attenuated Vibrio anguillarum vaccine. Fish Shellfish Immunol 40:99–108
CAS
Article
PubMed
Google Scholar
Tatner M, Horne M (1983) Factors influencing the uptake of 14C- labelled Vibrio anguillarum vaccine in direct immersion experiments with rainbow trout, Salmo gairdneri Richardson. J Fish Immunol 22:585–591
Google Scholar
Avtalion RR, Milgrom L (1976) Regulatory effect of temperature and antigen upon immunity in ectothermic vertebrates. I. Influence of hapten density on the immunological and serological properties of penicilloyl-carrier conjugates. Immunology 31:589–594
CAS
PubMed
PubMed Central
Google Scholar
Le Morvan C, Troutaud D, Deschaux P (1998) Differential effects of temperature on specific and nonspecific immune defences in fish. J Exp Biol 201:165–168
PubMed
Google Scholar
Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151
Article
PubMed
Google Scholar
Hoare R, Hovland H, Langston AL, Imsland A, Stefansson SO, Mulcahy M et al (2002) Susceptibility of three different strains of juvenile Atlantic halibut (Hippoglossus hippoglossus L.) cultured at two different temperatures to Vibrio anguillarum and temperature effect on antibody response. Fish Shellfish Immunol 13:111–123
CAS
Article
PubMed
Google Scholar
Castro R, Tafalla C (2015) Overview of fish immunity. Mucosal health in aquaculture. Academic Press, Cambridge, pp 3–55
Chapter
Google Scholar
Zhu L, Nie L, Zhu G, Xiang L, Shao J (2013) Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. Dev Comp Immunol 39:39–62
CAS
Article
PubMed
Google Scholar
Zhang J, Kong X, Zhou C, Li L, Nie G, Li X (2014) Toll-like receptor recognition of bacteria in fish: ligand specificity and signal pathways. Fish Shellfish Immunol 41:380–388
CAS
Article
PubMed
Google Scholar
LaFrentz BR, LaPatra SE, Jones GR, Congleton JL, Sun B, Cain KD (2002) Characterization of serum and mucosal antibody responses and relative per cent survival in rainbow trout, Oncorhynchus mykiss (Walbaum), following immunization and challenge with Flavobacterium psychrophilum. J Fish Dis 25:703–713
CAS
Article
Google Scholar
Valdenegro-Vega VA, Crosbie P, Vincent B, Cain KD, Nowak BF (2013) Effect of immunization route on mucosal and systemic immune response in Atlantic salmon (Salmo salar). Vet Immunol Immunopathol 151:113–123
CAS
Article
PubMed
Google Scholar
Raida MK, Nylén J, Holten-Andersen L, Buchmann K (2011) Association between plasma antibody response and protection in rainbow trout Oncorhynchus mykiss immersion vaccinated against Yersinia ruckeri. PLoS One 6:e18832
CAS
Article
PubMed
PubMed Central
Google Scholar
Orieux N, Douet D, Le Hénaff M, Bourdineaud J (2013) Prevalence of Flavobacterium psychrophilum bacterial cells in farmed rainbow trout: characterization of metallothionein A and interleukin1-β genes as markers overexpressed in spleen and kidney of diseased fish. Vet Microbiol 162:127–135
CAS
Article
PubMed
Google Scholar
Soltani M, Shafiei S, Yosefi P, Mosavi S, Mokhtari A (2014) Effect of Montanide™ IMS 1312 VG adjuvant on efficacy of Yersinia ruckeri vaccine in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 37:60–65
CAS
Article
PubMed
Google Scholar