Shigenobu S, Wilson ACC. Genomic revelations of a mutualism: the pea aphid and its obligate bacterial symbiont. Cell Mol Life Sci. 2011;68:1297–309.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lu H-L, Price DRG, Wikramanayake A, Chang C-C, Wilson ACC. Ontogenetic differences in localization of glutamine transporter ApGLNT1 in the pea aphid demonstrate that mechanisms of host/symbiont integration are not similar in the maternal versus embryonic bacteriome. EvoDevo. 2016;7:1.
PubMed
PubMed Central
Article
CAS
Google Scholar
McFall-Ngai MJ. Animal-bacterial interactions in the early life history of marine invertebrates: the Euprymna scolopes/Vibrio fischeri symbiosis. Am Zool. 1994;34:554–61.
Article
Google Scholar
Koga R, Meng X-Y, Tsuchida T, Fukatsu T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte-embryo interface. Proc Natl Acad Sci USA. 2012;109:E1230–7.
CAS
PubMed
Article
Google Scholar
Matsuura Y, Kikuchi Y, Miura T, Fukatsu T. Ultrabithorax is essential for bacteriocyte development. Proc Natl Acad Sci USA. 2015;112:9376–81.
CAS
PubMed
Article
Google Scholar
Wilson ACC. Regulation of an insect symbiosis. In: Oliver KM, editor. Advances in insect physiology: mechanisms underlying microbial symbiosis (volume 58). Amsterdam: Elsevier; 2020. p. 207–32.
Chapter
Google Scholar
Lu H-L, Chang C-C, Wilson ACC. Amino acid transporters implicated in endocytosis of Buchnera during symbiont transmission in the pea aphid. Evodevo. 2016;7:24.
PubMed
PubMed Central
Article
CAS
Google Scholar
Moriyama M, Nikoh N, Hosokawa T, Fukatsu T. Riboflavin Provisioning Underlies Wolbachia’s Fitness Contribution to Its Insect Host. mBio. 2015;6:e01732-15.
PubMed
PubMed Central
Article
CAS
Google Scholar
Fisher ML, Levine JF, Guy JS, Mochizuki H, Breen M, Schal C, et al. Lack of influence by endosymbiont Wolbachia on virus titer in the common bed bug, Cimex lectularius. Parasit Vectors. 2019;12:436.
PubMed
PubMed Central
Article
CAS
Google Scholar
Sandström J, Pettersson J. Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance. J Insect Physiol. 1994;40:947–55.
Article
Google Scholar
Akman Gündüz E, Douglas AE. Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc Biol Sci. 2009;276:987–91.
PubMed
Google Scholar
Buchner P. Endosymbiosis of animals with plant microorganisms. New York: Interscience; 1965.
Google Scholar
Douglas AE. The microbial dimension in insect nutritional ecology. Funct Ecol. 2009;23:38–47.
Article
Google Scholar
Moran NA, Munson MA, Baumann P, Ishikawa H. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc London Ser B Biol Sci. 1993;253:167–71.
Article
Google Scholar
Bright M, Bulgheresi S. A complex journey: transmission of microbial symbionts. Nat Rev Microbiol. 2010;8:218–30.
CAS
PubMed
PubMed Central
Article
Google Scholar
Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. The evolution of host-symbiont dependence. Nat Commun. 2017;8:15973.
CAS
PubMed
PubMed Central
Article
Google Scholar
Griffiths GW, Beck SD. Intracellular symbiotes of the pea aphid, Acyrthosiphon pisum. J Insect Physiol. 1973;19:75–84.
Article
Google Scholar
Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS Nature. 2000;407:81–6.
CAS
PubMed
Article
Google Scholar
Douglas AE. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43:17–37.
CAS
PubMed
Article
Google Scholar
Hansen AK, Degnan PH. Widespread expression of conserved small RNAs in small symbiont genomes. ISME J. 2014;8:2490–502.
CAS
PubMed
PubMed Central
Article
Google Scholar
Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima S-Y. Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Curr Biol. 2014;24:R640–1.
CAS
PubMed
Article
Google Scholar
Price DRG, Duncan RP, Shigenobu S, Wilson ACC. Genome expansion and differential expression of amino acid transporters at the aphid/Buchnera symbiotic interface. Mol Biol Evol. 2011;28:3113–26.
CAS
PubMed
Article
Google Scholar
Miura T, Braendle C, Shingleton A, Sisk G, Kambhampati S, Stern DL. A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). J Exp Zool B Mol Dev Evol. 2003;295:59–81.
PubMed
Article
Google Scholar
Blackman RL. Reproduction, cytogenetics and development. In: Minks AK, Harrewijn P, editors. Aphids their biology, natural enemies, and control. Amsterdam: Elsevier; 1987. p. 163–95.
Google Scholar
Chang C-C, Lee W-C, Cook CE, Lin G-W, Chang T. Germ-plasm specification and germline development in the parthenogenetic pea aphid Acyrthosiphon pisum: Vasa and Nanos as markers. Int J Dev Biol. 2006;50:413–21.
PubMed
Article
Google Scholar
Büning J. Morphology, ultrastructure, and germ cell cluster formation in ovarioles of aphids. J Morphol. 1985;186:209–21.
PubMed
Article
Google Scholar
Chang C-C, Lin G-W, Cook CE, Horng S-B, Lee H-J, Huang T-Y. Apvasa marks germ-cell migration in the parthenogenetic pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Dev Genes Evol. 2007;217:275–87.
CAS
PubMed
Article
Google Scholar
Chung C-Y, Hsiao Y-M, Huang T-Y, Chang T-H, Chang C-C. Germline expression of the hunchback orthologues in the asexual viviparous aphids: a conserved feature within the Aphididae. Insect Mol Biol. 2018;27:752–65.
CAS
PubMed
Article
Google Scholar
Kindlmann P, Dixon AFG. Developmental constraints in the evolution of reproductive strategies: telescoping of generations in parthenogenetic aphids. Funct Ecol. 1989;3:531–7.
Article
Google Scholar
Feng H, Edwards N, Anderson CMH, Althaus M, Duncan RP, Hsu Y-C, et al. Trading amino acids at the aphid–Buchnera symbiotic interface. Proc Natl Acad Sci. 2019;116(32):16003–11.
CAS
PubMed
Article
Google Scholar
Wilson ACC, Ashton PD, Calevro F, Charles H, Colella S, Febvay G, et al. Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Mol Biol. 2010;19(Suppl 2):249–58.
CAS
PubMed
Article
Google Scholar
International Aphid Genomics Consortium. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 2010;8:e1000313.
Article
CAS
Google Scholar
Macdonald SJ, Lin GG, Russell CW, Thomas GH, Douglas AE. The central role of the host cell in symbiotic nitrogen metabolism. Proc Biol Sci. 2012;279:2965–73.
CAS
PubMed
PubMed Central
Google Scholar
Hagan HR. Pseudoplacental Viviparity-Corrodentia, Hemiptera (Aphididae). Embryol Viviparous Insects. 1951:347–92.
Wylie C. Germ cells. Curr Opin Genet Dev. 2000;10:410–3.
CAS
PubMed
Article
Google Scholar
Steel CG. The neurosecretory system in the aphid Megoura viciae, with reference to unusual features associated with long distance transport of neurosecretion. Gen Comp Endocrinol. 1977;31:307–22.
CAS
PubMed
Article
Google Scholar
Bowers B, Johnson B. An electron microscope study of the corpora cardiaca and secretory neurons in the aphid, Myzus persicae (Sulz.). Gen Comp Endocrinol. 1966;6:213–30.
Google Scholar
Page DT. Inductive patterning of the embryonic brain in Drosophila. Development. 2002;129:2121–8.
CAS
PubMed
Google Scholar
Kollmann M, Minoli S, Bonhomme J, Homberg U, Schachtner J, Tagu D, et al. Revisiting the anatomy of the central nervous system of a hemimetabolous model insect species: the pea aphid Acyrthosiphon pisum. Cell Tissue Res. 2011;343:343–55.
PubMed
Article
Google Scholar
Ponsen MB. The site of potato leafroll virus multiplication in its vector, Myzus persicae : an anatomical study. Wageningen: Agricultural University, Department of Virology; 1972.
Google Scholar
Hindle SJ, Bainton RJ. Barrier mechanisms in the Drosophila blood-brain barrier. Front Neurosci. 2014;8:414.
PubMed
PubMed Central
Article
Google Scholar
DeSalvo MK, Mayer N, Mayer F, Bainton RJ. Physiologic and anatomic characterization of the brain surface glia barrier of Drosophila. Glia. 2011;59:1322–40.
PubMed
PubMed Central
Article
Google Scholar
Laughton AM, Garcia JR, Altincicek B, Strand MR, Gerardo NM. Characterisation of immune responses in the pea aphid, Acyrthosiphon pisum. J Insect Physiol. 2011;57:830–9.
CAS
PubMed
Article
Google Scholar
Schmitz A, Anselme C, Ravallec M, Rebuf C, Simon J-C, Gatti J-L, et al. The cellular immune response of the pea aphid to foreign intrusion and symbiotic challenge. PLoS ONE. 2012;7:e42114.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lavine MD, Strand MR. Insect hemocytes and their role in immunity. Insect Biochem Mol Biol. 2002;32:1295–309.
CAS
PubMed
Article
Google Scholar
Lin G-W, Cook CE, Miura T, Chang C-C. Posterior localization of ApVas1 positions the preformed germ plasm in the sexual oviparous pea aphid Acyrthosiphon pisum. Evodevo. 2014;5:18.
PubMed
PubMed Central
Article
CAS
Google Scholar
Price DRG, Feng H, Baker JD, Bavan S, Luetje CW, Wilson ACC. Aphid amino acid transporter regulates glutamine supply to intracellular bacterial symbionts. Proc Natl Acad Sci USA. 2014;111:320–5.
CAS
PubMed
Article
Google Scholar
Dahan RA, Duncan RP, Wilson ACC, Dávalos LM. Amino acid transporter expansions associated with the evolution of obligate endosymbiosis in sap-feeding insects (Hemiptera: sternorrhyncha). BMC Evol Biol. 2015;15:52.
PubMed
PubMed Central
Article
CAS
Google Scholar
Duncan RP, Husnik F, Van Leuven JT, Gilbert DG, Dávalos LM, McCutcheon JP, et al. Dynamic recruitment of amino acid transporters to the insect/symbiont interface. Mol Ecol. 2014;23:1608–23.
CAS
PubMed
Article
Google Scholar
McCutcheon JP, von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Curr Biol. 2011;21:1366–72.
CAS
PubMed
PubMed Central
Article
Google Scholar
McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2011;10:13–26.
PubMed
Article
CAS
Google Scholar
Luan J-B, Chen W, Hasegawa DK, Simmons AM, Wintermantel WM, Ling K-S, et al. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol Evol. 2015;7:2635–47.
CAS
PubMed
PubMed Central
Article
Google Scholar
Mao M, Yang X, Bennett GM. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc Natl Acad Sci USA. 2018;115:E11691–700.
CAS
PubMed
Article
Google Scholar
Jiang Z-F, Xia F, Johnson KW, Bartom E, Tuteja JH, Stevens R, et al. Genome Sequences of the primary endosymbiont “Candidatus Portiera aleyrodidarum” in the Whitefly Bemisia tabaci B and Q biotypes. J Bacteriol. 2012;194:6678–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Jiang Z-F, Xia F, Johnson KW, Brown CD, Bartom E, Tuteja JH, et al. Comparison of the genome sequences of “Candidatus Portiera aleyrodidarum” primary endosymbionts of the Whitefly Bemisia tabaci B and Q biotypes. Appl Environ Microbiol. 2013;79:1757–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Couchman JR, King PE. Ovariole sheath structure and its relationship with developing embryos in a parthenogenetic viviparous aphid. Acta Zool. 1980;61:147–55.
Article
Google Scholar
Gäde G, Hoffmann KH, Spring JH. Hormonal regulation in insects: facts, gaps, and future directions. Physiol Rev. 1997;77:963–1032.
PubMed
Article
Google Scholar
Lorenz MW, Gäde G. Hormonal regulation of energy metabolism in insects as a driving force for performance. Integr Comp Biol. 2009;49:380–92.
CAS
PubMed
Article
Google Scholar
Castagna M, Shayakul C, Trotti D, Sacchi VF, Harvey WR, Hediger MA. Molecular characteristics of mammalian and insect amino acid transporters: implications for amino acid homeostasis. J Exp Biol. 1997;200:269–86.
CAS
PubMed
Google Scholar
Aprison MH, Werman R. The distribution of glycine in cat spinal cord and roots. Life Sci. 1965;4:2075–83.
CAS
PubMed
Article
Google Scholar
Yang CR, Svensson KA. Allosteric modulation of NMDA receptor via elevation of brain glycine and D-serine: the therapeutic potentials for schizophrenia. Pharmacol Ther. 2008;120:317–32.
CAS
PubMed
Article
Google Scholar
Söderpalm B, Lidö HH, Ericson M. The Glycine receptor—a functionally important primary brain target of ethanol. Alcohol Clin Exp Res. 2017;41:1816–30.
PubMed
Article
CAS
Google Scholar
Tiedje KE, Stevens K, Barnes S, Weaver DF. Beta-alanine as a small molecule neurotransmitter. Neurochem Int. 2010;57:177–88.
CAS
PubMed
Article
Google Scholar
Renick SE, Kleven DT, Chan J, Stenius K, Milner TA, Pickel VM, et al. The mammalian brain high-affinity L-proline transporter is enriched preferentially in synaptic vesicles in a subpopulation of excitatory nerve terminals in rat forebrain. J Neurosci. 1999;19:21–33.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cohen SM, Nadler JV. Sodium-dependent proline and glutamate uptake by hippocampal synaptosomes during postnatal development. Brain Res Dev Brain Res. 1997;100:230–3.
CAS
PubMed
Article
Google Scholar
Paul BD, Sbodio JI, Snyder SH. Cysteine metabolism in neuronal redox homeostasis. Trends Pharmacol Sci. 2018;39:513–24.
CAS
PubMed
PubMed Central
Article
Google Scholar
Stork T, Engelen D, Krudewig A, Silies M, Bainton RJ, Klämbt C. Organization and function of the blood-brain barrier in Drosophila. J Neurosci Society for Neuroscience. 2008;28:587–97.
CAS
Article
Google Scholar
Fearon DT. Seeking wisdom in innate immunity. Nature. 1997;388(6640):323–4.
PubMed
Article
CAS
Google Scholar
Hayashi S, Kondo T. Development and function of the Drosophila tracheal system. Genetics. 2018;209:367–80.
CAS
PubMed
PubMed Central
Article
Google Scholar
Manning G. Development of the Drosophila tracheal system. Dev Drosophila melanogaster. 1993;1:609–85.
Google Scholar
Flamme I, Breier G. The role of vascular endothelial growth factors and their receptors during embryonic vascular development. In: Tomanek RJ, editor. Assembly of the vasculature and its regulation. Boston, MA: Birkhäuser Boston; 2002. p. 21–54.
Chapter
Google Scholar
Castillo JC, Robertson AE, Strand MR. Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti. Insect Biochem Mol Biol. 2006;36:891–903.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tungjitwitayakul J, Tatun N. Hemocyte Types based on total and differential counts in Samia cynthia ricini (Lepidoptera; Saturniidae) reared on host plants versus an artificial diet. Naresuan Univ J Sci Technol. 2019;27:82–94.
Google Scholar
Hong M, Hwang D, Cho S. Hemocyte morphology and cellular immune response in termite (Reticulitermes speratus). J Insect Sci. 2018;18(2):46.
PubMed Central
Article
CAS
PubMed
Google Scholar
Martins GF, Ramalho-Ortigão JM. Oenocytes in insects. Invertebrate Surviv J. 2012;9:139–52.
Google Scholar
Kanost MR. Hemolymph. In: Resh VH, Cardé RT, editors. Encyclopedia of insects, volume 2. Amsterdam: Elsevier; 2009. p. 446–9.
Chapter
Google Scholar
Pham LN, Schneider DS. Evidence for specificity and memory in the insect innate immune response. Insect immunology. New York: Academic Press; 2008. p. 97–127.
Google Scholar
Bermingham J, Rabatel A, Calevro F, Viñuelas J, Febvay G, Charles H, et al. Impact of host developmental age on the transcriptome of the symbiotic bacterium Buchnera aphidicola in the pea aphid (Acyrthosiphon pisum). Appl Environ Microbiol. 2009;75:7294–7.
CAS
PubMed
PubMed Central
Article
Google Scholar
Lin G-W, Chang C-C. Identification of critical conditions for immunostaining in the pea aphid embryos: increasing tissue permeability and decreasing background staining. J Vis Exp. 2016. https://doi.org/10.3791/53883.
Article
PubMed
PubMed Central
Google Scholar