Advertisement

BMC Chemistry

, 13:26 | Cite as

Co-aminobenzamid@Al-SBA-15: a favorable catalyst in synthesis of 2,3-dihydroquinazolin-4(1H)-ones

  • Javad Safaei-GhomiEmail author
  • Raheleh Teymuri
  • Atefeh Bakhtiari
Open Access
Research article
  • 484 Downloads
Part of the following topical collections:
  1. Organic Chemistry

Abstract

The novel hybrid Co-aminobenzamid@Al-SBA-15 was synthesized as a modified mesoporous catalyst. To achieve this aim, the obtained materials were investigated by various techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), N2 adsorption–desorption, field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) to examine the functional groups, crystallinity, surface area, morphology, particle size distribution and amounts of functional groups, respectively. Co-aminobenzamid@Al-SBA-15 exhibits excellent catalytic activity for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones under mild reaction conditions. The heterogeneous catalyst showed good recyclability and can be reused for ten consecutive cycles without significant loss of its catalytic activity.

Keywords

Modified mesoporous Aluminosilicate Dihydroquinazolinones Three-component condensation 

Introduction

Nitrogen-containing fused-heterocycles are an integral part of biological and small molecule drugs or synthetic molecules [1] and physiologically active natural products [2]. Noteworthy, one of this fused-heterocycle is 2,3-dihydroquinazolinone (DHQZ-1) which contains wide pharmacological properties including anti-inflammatory, antibacterial, antitumor, and anticonvulsant [3, 4, 5, 6]. Having looked at this importance, various catalysts were employed including, KAl(SO4)2·12H2O [7], silica sulfuric acid (SSA) [8], aluminum methanesulfonate [9], ZnO nanoparticles [10], Al(H2PO4)3 [11], Montmorillonite K-10 [12], β-Cyclodextrin [13], Co(m-NBS)2 [14]. Whereas the majority of these procedures have noticeable negative aspects such as long reaction times, low yields, harsh reaction conditions, and use of expensive and toxic catalysts. Therefore, to avoid these limitations, the exploration of an efficient, easily available catalyst with high catalytic activity and short reaction times for the preparation of dihydroquinazolins is still favored.

Ordered mesoporous silicas such as those of M41S, SBA-n, and MSU-X families discovered in the early 1990s have been regarded as an encouraging class of materials for separation and catalysis [15, 16]. These materials serve as an unprecedented choice for such applications. In fact, they offer high specific surface areas, large and defined pore sizes, defined surface acidity, and excellent mechanical and thermal stability [17, 18]. Moreover, the substituents such as aluminum, titanium, and zirconium can be incorporated into the silica framework to obtain materials for applications such as catalysis and ion exchange. Among the metal substituted mesoporous materials, aluminum-incorporated mesoporous materials have considerable potential in moderating acid-catalyzed reactions for large molecules [19, 20, 21]. A large number of research groups have sought new and novel approaches toward incorporating multiple functional groups onto heterogeneous catalysts, which can catalyze multistep reaction cascades in one system or work in a cooperative manner to alter the characteristics of a single reaction [22, 23, 24]. In the current work, the use of material with surface functional groups shows improved selectivity catalyst. Consequently, we synthesize the novel hybrid Co-aminobenzamid@Al-SBA-15 by amino-functionalized with employing 3-aminopropyltriethoxysilane (3-APTES) and anchored 2-aminobenzamide on it. The synthesizing process pursued by grafting of Co (II) to catch the desired product. Also, the activity of catalyst has been scrutinized by synthesizing 2,3-dihydroquinazolin-4(1H)-one derivatives (Scheme 1).
Scheme 1

Co-aminobenzamid@Al-SBA-15 catalyzed the synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives

Results and discussion

The Fourier-transform infrared (FT-IR) spectra of Al-SBA-15, APTMS@Al-SBA-15, aminobenzamid@Al-SBA-15, and Co-aminobenzamid@Al-SBA-15 are shown in Fig. 1. The peaks at 600–1200 cm−1 can be attributed to the vibration of Si–O groups in the mesoporous silica framework. The absorption bands of Al-SBA-15 based materials at 1078, 802, and 460 cm−1 are attributed to the Si–O–Si anti-stretching vibration, the Si–O–Si stretching vibration, and the bending vibration of Si–O, respectively. In the FT-IR spectrum of APTES@Al-SBA-15, there are the characteristic bands of –NH2 at 3427, 1568 cm−1. For the aminobenzamid@Al-SBA-15 sample, the absorption peak at 1694, 1617 and 1494 cm−1 is observed and attributed to the characteristic peaks of aminobenzamid, due to the presence of the C=O bonds. After aminobenzamid@Al-SBA-15 coordinated with Co, this IR absorption peak shifted from 1617 to 1620 cm−1, which is indicative for the formation of a Co–ligand bond. The results above imply the presence of aminobenzamid bonded on the surface of Al-SBA-15, and that the molecular structure of these functional moieties can be perfectly retained in the complex of Co-aminobenzamid@Al-SBA-15.
Fig. 1

Fourier-transform infrared (FT-IR) spectra of Al-SBA-15, ATPES@Al-SBA-15, aminobenzamid@Al-SBA-15, and Co-aminobenzamid@Al-SBA-15

The N2 adsorption/desorption isotherms and pore-size distribution curves of the samples are displayed in Fig. 2. As shown in Fig. 2, all the isotherms exhibited a typical type IV isotherm with an H1 hysteresis loop starting from P/P0 = 0.6. This is the characteristic of mesoporous Al-SBA-15 with ordered pore structures, which is quite important to disperse and stabilize the supported Cobalt species. Compared with the BET surface area (815 m2/g) of Al-SBA-15, the surface area of Co-aminobenzamid@Al-SBA-15 was decreased to 581 m2/g after Al-SBA-15 was functionalized. The inset displays the narrow pore size distribution centered on 6.42, 4.27 and 3.94 nm for Al SBA-15, aminobenzamid@Al-SBA-15 and Co-aminobenzamid@Al-SBA-15 samples, respectively. Aminobenzamid@Al-SBA-15 displays a little smaller pore size than the parent Al-SBA-15 due to the incorporation of Ph-groups and NH2 into the pore channels. These results are in excellent agreement with the fact that the surface of mesoporous Al-SBA-15 has been successfully modified by aminobenzamid. Co species have entered into the channels of the Al-SBA-15 materials, resulting in the decrease in its pore size.
Fig. 2

N2 sorption isotherms of Al-SBA-15, aminobenzamid@Al-SBA-15, and Co-aminobenzamid@Al-SBA-15

In order to obtain the morphology and particle size of nanoparticles, SEM images of the mesoporous were obtained and are presented in (Fig. 3). As shown in the SEM images, of Fig. 3a the Al-SBA-15 sample is that with the bagel-shaped particles with relatively uniform sizes. After being functionalized with aminobenzamid and Co the shape of Al-SBA-15 is unchanged noticeably (Fig. 3b). The TEM image of the Co-aminobenzamid@Al-SBA-15 sample (Fig. 3c) reveals that no cobalt can be observed in the pores, which shows the Co2+ ions have coordinated with two N atoms in aminobenzamid@Al-SBA-15.
Fig. 3

FE-SEM images of a Al-SBA-15, b Co-aminobenzamid@Al-SBA-15 and TEM image of c Co-aminobenzamid@Al-SBA-15

The small-angle XRD patterns of Al-SBA-15 and Co-aminobenzamid@Al-SBA-15 are shown in Fig. 4. The Bragg peaks in the 2q range of 0.8–2, which can be indexed as (1 0 0), (1 1 0) and (2 0 0) reflections of the two-dimensional hexagonal structure of the SBA-15 material. As can be seen, the regularity of Al-SBA-15 is decreased. The ordered structure of Co-aminobenzamid@Al-SBA-15 has remained intact, as supported by the XRD results. Also, there is no major change in the crystallinity of Al-SBA-15 after functionalization and Co immobilization. Furthermore, the diffraction peaks of Co species cannot be detected, which also shows that the Co species were immobilized into the pore channels of Al-SBA-15 in the atom dispersion, and no crystal Co species existed in the sample. The elemental composition of Co-aminobenzamid@Al-SBA-15 spinel nanocrystals was shown by the EDS spectrum (Fig. 5).
Fig. 4

Low angle XRD patterns of Al-SBA-15 and Co-aminobenzamid@Al-SBA-15

Fig. 5

Energy-dispersive X-ray spectroscopy of Co-aminobenzamid@Al-SBA-15

Elemental analysis results showed that the carbon, nitrogen, oxygen, aluminum, silicon, cobalt amount of the Co-aminobenzamid@Al-SBA-15 was 25.89, 7.27, 40.92, 1.28, 20.21, 4.43 (wt%).

As a result of our great interest in preparation of heterocyclic compounds by applying heterogeneous catalysts [25, 26], herein we wish to report an efficient procedure to synthesize 2,3-dihydroquinazolin-4(1H)-one derivatives through a three-component one-pot condensation of isatoic anhydride, aromatic aldehyde and primary amines/or ammonium acetate using Co-aminobenzamid@Al-SBA-15 as catalyst (Scheme 1).

Beforehand, the reaction of isatoic anhydride, benzaldehyde and aniline were picked out as a model reaction. And now, the effect of experimental factors comprising the type and amount of catalyst and solvent were investigated to find the best condition for this reaction and the results are listed in Table 1. To begin with the solvent examination, it was demonstrated that EtOH is the most effective condition for this condensation of isatoic anhydride, aromatic aldehyde and primary amines or ammonium acetate (Table 1, entry 8). Also, amount of catalysts were investigated in the reaction of isatoic anhydride, benzaldehyde and aniline as listed in Table 1. The highest yield was obtained by 0.03 g of Co-aminobenzamid@Al-SBA-15 under reflux in EtOH.
Table 1
The effect of reaction condition on the synthesis of 2,3-diphenyl-2,3-dihydroquinazolin-4(1H)-one under various conditions
Open image in new window

Entry

Solvent (condition)

Catalyst

Time (min)

Yielda (%)

1

Solvent-free

Co-aminobenzamid@Al-SBA-15 (0.03 g)

80

40

2

Water (reflux)

Co-aminobenzamid@Al-SBA-15 (0.03 g)

80

55

3

DCM (reflux)

Co-aminobenzamid@Al-SBA-15 (0.03 g)

60

Trace

4

Acetone (reflux)

Co-aminobenzamid@Al-SBA-15 (0.03 g)

60

25

5

Acetonitrile (reflux)

Co-aminobenzamid@Al-SBA-15 (0.03 g)

90

30

6

Methanol (reflux)

Co-aminobenzamid@Al-SBA-15 (0.03 g)

50

70

7

Ethanol (reflux)

Co-aminobenzamid@Al-SBA-15 (0.02 g)

25

85

8

Ethanol (reflux)

Co-aminobenzamid@Al-SBA-15 (0.03 g)

25

94

9

Ethanol (reflux)

Co-aminobenzamid@Al-SBA-15 (0.05 g)

25

93

a Isolated yields

After optimization of the reaction conditions, to investigate the efficiency and the scope of the presented procedure, numerous mono and disubstituted 2,3-dihydroquinazolin-4(1H)-ones were formed via one-pot three-component condensation reactions between isatoic anhydride, aromatic aldehyde and primary amines/or ammonium acetate using catalytic amounts of Co-aminobenzamid@Al-SBA-15 under reflux conditions in ethanol (Tables 2, 3).
Table 2

Synthesis of monosubstituted 2,3-dihydroquinazoline-4(1H)-ones using Co-aminobenzamid@Al-SBA-15

Entry

Product

Time (min)

Yielda (%)

m.p °C [refs]

1

Open image in new window

20

96

218–220 [7]

2

Open image in new window

22

90

214–215 [11]

3

Open image in new window

20

92

199–201 [7]

4

Open image in new window

16

97

233–235 [7]

5

Open image in new window

26

89

192–193 [27]

6

Open image in new window

25

92

203–205 [9]

7

Open image in new window

18

95

182–184 [28]

8

Open image in new window

22

94

204–206 [11]

9

Open image in new window

15

95

177–179 [7]

10

Open image in new window

15

92

209–211 [7]

a Isolated yields

Table 3

Synthesis of disubstituted 2,3-dihydroquinazoline-4(1H)-ones using Co-aminobenzamid@Al-SBA-15

Entry

Product

Time (min)

Yielda (%)

m.p °C [refs]

1

Open image in new window

25

94

205–207 [29]

2

Open image in new window

28

90

193–195 [7]

3

Open image in new window

30

90

217–219 [29]

4

Open image in new window

24

96

212–214 [30]

5

Open image in new window

28

88

184–185 [9]

6

Open image in new window

28

92

216–218 [11]

7

Open image in new window

25

95

211–213 [28]

8

Open image in new window

38

87

191–192

9

Open image in new window

25

92

156–157

10

Open image in new window

23

94

209–211 [9]

a Isolated yields

To compare the efficiency of Co-aminobenzamid@Al-SBA-15 with the reported catalysts for the synthesis of 2,3-dihydroquinazoline-4(1H)-ones derivatives, we have tabulated the results in Table 4. As Table 4 indicates, Co-aminobenzamid@Al-SBA-15 is superior with respect to the reported catalysts in terms of reaction time, yield and conditions. In addition, our catalyst was recyclable for at least ten times. High catalytic activity and ease of recovery from the reaction mixture, and several reuse times without significant losses in performance are additional eco-friendly attributes of this catalytic system.
Table 4

Comparison of catalytic activity of Co-aminobenzamid@Al-SBA-15 with other reported catalysts

Entry

Solvent (condition)

Catalyst

Time (min)

Yielda (%)

[Refs]

1

Ethanol (reflux)

Co-aminobenzamid@Al-SBA-15 (0.03 g)

25

94

This work

2

Ethanol (reflux)

Al-SBA-15 (0.03 g)

45

80

This work

3

EtOH (reflux)

Montmorillonite K-10 (0.3 g)

390

80

[12]

4

H2O (reflux)

β-Cyclodextrin (0.2%)

180

84

[13]

5

Ethanol/H2O (reflux)

Co(m-NBS)2 (3%)

120

97

[14]

6

Ethanol (reflux)

KAl(SO4)2·12H2O (0.5%)

240

88

[7]

7

Solvent-free

Silica sulfuric acid (20%)

300

80

[8]

8

Solvent-free

Al(H2PO4)3 (16%)

35

80

[11]

9

Solvent-free

Nano ZnO (20%)

180

88

[10]

a Isolated yields

As a result of this table, condensation of aniline with commercially available aromatic aldehydes having electron-donating and electron withdrawing substituents produced 4k–t in high yields (Table 3, entries 1–10). According to the results, aldehydes bearing electron-donating groups produced the desired products more quickly than the aldehydes with electron-withdrawing groups. Though meta- and para substituted aromatic aldehydes reacted quickly, ortho substituted aromatic aldehydes give the product in longer reaction time (Table 2, entry 5, 6). Also, the results shown in Tables confirm that the reaction was compatible successfully with a broad range of substituents (both electron-donating and electron-withdrawing groups) in the amines or the aldehydes. All novel and known products were characterized by comparing their physical data, 1H, 13CNMR, FT-IR spectroscopy, and elemental analysis spectra.

On the basis of the point mentioned above, a reasonable mechanism for the preparation of 2,3-dihydroquinazolin-4(1H)-ones derivatives by the Co-aminobenzamid@Al-SBA-15 is suggested in Scheme 2. The first point, interaction of Co-aminobenzamid@Al-SBA-15 as a catalyst and isatoic anhydride to produce a reactive intermediate I. And now, the N-nucleophilic primary amine attacks on the carbonyl unit of I to produce a reactive intermediate II, which in turn affords III through decarboxylation reaction. Subsequently, the proton transfer of III affords 2-amino-N-substituted-amide IV. Besides the reaction of an activated aldehyde with IV proceeds to produce the imine intermediate V. The part of amide functional group in intermediate IV could be formed using tautomerism phenomenon in the presence of the Co-aminobenzamid@Al-SBA-15. Accordingly, intermediate VI could be prepared by an intermolecular nucleophilic attack of the amide nitrogen on activated imine carbon, followed by a 1,5-proton transfer to yield the final 2,3-dihydroquin-azoline-4-(1H)-ones as the concluding product. These steps are efficiently carried out on the high nanoparticle surface and also by the cavitation effect of ultrasound irradiation. For the aforementioned mechanism, the significant roles of Co-aminobenzamid@Al-SBA-15, are activation of carbonyl groups and efficient development of the reaction on its high surface area.
Scheme 2

The proposed reaction mechanism for the formation of substituted 2,3-dihydroquinazoline-4(1H)-ones using Co-aminobenzamid@Al-SBA-15

Another distinguishing feature of Co-aminobenzamid@Al-SBA-15 is recoverable without considerable loss of catalytic activity. In order to study the reusability of Co-aminobenzamid@Al-SBA-15 as an environmentally-friendly catalyst, at least ten batches of the experiments were carried out for the preparation of 2,3-diphenyl-2,3-dihydroquinazolin-4(1H)-one (4k). To prove this feature, after the accomplishment of the reaction, 5 mL ethanol was added to the reaction mixture and the modified mesoporous was recycled via filtration and washed Co-aminobenzamid@Al-SBA-15 was reused for the new condensation reaction of isatioc anhydride, benzaldehyde and aniline under similar reaction conditions up to ten cycles. There is an insignificant loss of catalytic activity and providing the products in high yield (Fig. 6).
Fig. 6

Reusability of Co-aminobenzamid@Al-SBA-15 for the synthesis of 4k

Conclusions

To recapitulate briefly, we have reported a selective and efficient method for the synthesis of 2,3-dihydroquinazolin-4(1H)-ones derivatives via three-component one-pot condensation of isatoic anhydride, aromatic aldehyde and primary amines/or ammonium acetate using Co-aminobenzamid@Al-SBA-15 as a novel catalyst. The current method provides obvious positive points such as environmental friendliness, significantly shorter reaction time, markedly excellent yields and simple workup procedure. In our opinion, we expect this method will find extensive applications in the field of combinatorial chemistry, diversity-oriented synthesis.

Experimental section

General

All organic materials were purchased commercially from Sigma-Aldrich, and Merck and were used without further purification. Melting points of products were determined by Electro thermal 9200. All IR spectra were recorded by means of FT-IR Magna spectrometer 550 Nicolet using KBr plates. NMR spectra were attained in DMSO-d6 as a solvent and are reported as parts per million (ppm) downfield from TMS as an internal standard. The NMR spectra were obtained on a Bruker Avance-400 MHz spectrometer. HRMS analyses were carried out using a Bruker micro-TOF-Q-MS analyzer. The elemental analyses (C, H, N) were obtained from a Carlo ERBA Model EA 1108 analyzer. The XRD patterns were recorded on an X-ray diffractometer (PHILIPS, PW 1510, Netherland) using Cu-Kα radiation (λ = 0.154056 nm) in the range 2θ = 0.8–10°. Field Emission Scanning electron microscope (FE-SEM) of nanoparticles was performed on a Model FE-SEM. The particle size and structure were observed using a Philips CM10 transmission electron microscope operating at 30 kV. The N2 adsorption/desorption analysis (BET) was performed at 120 °C using an automated gas adsorption analyzer (BEL SORP mini II).

Preparation of Al-SBA-15

Al-SBA-15 were synthesized following published procedures [31, 32]. In a classic procedure 2 g of Pluronic P123 was dissolved in 75 mL hydrochloric acid solution of pH 1.5. The solution was stirred at 40 °C for 6 h. A second solution was made by adding 3.2 mL of TEOS (tetraethylorthosilicate) and 5 ml of the hydrochloric acid solution of pH 1.5 to a 0.22 g of aluminum triisopropoxide. This suspension was vigorously stirred in a closed flask for 1.5 h during which it became clear. The TEOS solution was quickly added to the surfactant solution and stirred for 20 h at 40 °C. The resulting clear suspension was transferred to a Teflon lined stainless steel autoclave and heated to 100 °C for 20 h. The recovered white solid was filtrated and washed three times with demineralized water and two times with ethanol. The sample was dried overnight at 100 °C. The template was removed by calcination for 10 h at 550 °C with a heating ramp of 1 °C/min. The sample is designated as Al-SBA-15.

Preparation of APTES@Al-SBA-15

In a 50 mL three-necked round-bottomed flask, 3-aminopropyl triethoxysilane (APTES) (1 mL, 5 mmol) was added dropwise to a suspension of Al-SBA-15 (1 g) in dry toluene (30 mL) under an N2 atmosphere. The mixture solution was refluxed for 24 h. After that, the obtained solid was filtered and washed several times with dichloromethane to remove the unreacted starting material, and dried in a vacuum oven at 120 °C for 8 h. The white powder obtained was designated as APTES@Al-SBA-15.

Preparation of aminobenzamid@Al-SBA-15

In a 50 mL round-bottomed flask, isatoic anhydride (0.8 g, 5 mmol) was added to the suspension of APTES@Al-SBA-15 (4 g) in absolute ethanol (30 mL). The mixture solution was refluxed for 12 h. After that, the solid was filtered and washed repeatedly with ice-cold EtOH and dried at room temperature by infrared radiation. The dusty solid obtained was designated as aminobenzamid@Al-SBA-15 (Scheme 3).
Scheme 3

Schematic diagram of preparation Co-aminobenzamid@Al-SBA-15

Preparation of Co-aminobenzamid@Al-SBA-15

In a 50 mL round-bottomed flask, aminobenzamid@Al-SBA-15 (0.2 g) was added to the mixture solution of CoCl2 (0.1 mmol) in absolute ethanol (25 mL). Afterward, this mixture solution was stirred at room temperature for 12 h, the solid was filtered and washed repeatedly with absolute ethanol until the eluent became colorless, and then dried at room temperature by infrared radiation. The light-green solid obtained was designated as Co-aminobenzamid@Al-SBA-15. The above samples were prepared by the strategy shown in Scheme 3.

General procedure for the preparation of 2,3-dihydroquinazolin-4(1H)-ones under mild reaction

Co-aminobenzamid@Al-SBA-15 as an efficient catalyst was added to an ethanol solution of isatoic anhydride (1 mmol), ammonium acetate (1.2 mmol) or primary aromatic amine (1.1 mmol) and aldehyde (1.0 mmol) were heated in reflux, for desired times. As soon as the complete disappearance of the starting material, as checked by TLC (7:3 n-hexane: ethyl acetate). Then the catalyst was removed by Centrifuging. At that instant, 10 mL ice water was added and the precipitated product was filtered. At the end of the process, the residue was recrystallized from ethanol to obtain the crude product.

Spectroscopic data for selected compounds

2-(4-Chlorophenyl)-2,3-dihydroquinazolin-4(1H)-one (4c): m.p. 199–201 °C. FT-IR (KBr, νmax/cm−1): 3307, 3188, 1657, 1609, 1509, 1484. 1H NMR (400 MHz, DMSO-d6): δ (ppm) 8.28 (br s, 1H), 7.59 (dd, 1H, J = 8.0 Hz, J = 1.1 Hz), 7.49 (d, 2H, J = 8.6 Hz), 7.44 (d, 2H, J = 8.6 Hz), 7.26–7.21–7.26 (m, 1H), 7.12 (br s, 1H), 6.73 (dd, 1H, J = 8.0 Hz, J = 1.1 Hz), 6.67–6.80 (m, 1H), 5.74 (s, 1H). 13C NMR (100 MHz, DMSO-d6) δ ppm = 161.8, 144.9, 140.1, 131.6, 131.1, 127.7 (2C), 127.5, 126.0, 116.7, 113.2, 113.3, 64.9. HRMS (ESI): m/z [M+H]+ calcd for C14H11N2OCl: 258.0559; found: 258.0614. Anal. Calcd. For C14H11N2OCl: C, 65.00; H, 4.29; N, 10.83. Found: C, 65.22; H, 4.19; N, 10.75.

2-(4-Methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one (4i): m.p. 177–179 °C. FT-IR (KBr, νmax/cm−1): 3305, 3179, 3054, 1649, 1612, 1508, 1479, 1251, 1037, 749. 1H NMR (400 MHz, DMSO-d6): δ (ppm) 8.18 (br s, 1H), 7.62 (d, 1H, J = 7.2 Hz), 7.44 (d, 1H, J = 7.3 Hz), 7.31 (t, 2H, J = 8.6 Hz), 7.20 (t, 1H, J = 8.4 Hz), 7.05 (br s, 1H), 6.90 (d, 2H, J = 8.6 Hz), 6.71 (t, 1H, J = 7.6 Hz), 5.76 (s, 1H), 3.76 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ ppm = 163.5, 158.2, 146.7, 132.9, 132.4, 127.9, 127.3, 116.0, 115.1, 113.7, 113.1, 67.2, 52.9. HRMS (ESI): m/z [M+H]+ calcd for C15H14N2O2: 254.1055; found 254.1106. Anal. Calcd. For C15H14N2O2: C, 70.85; H, 5.55; N, 11.02. Found: C, 70.76; H, 5.59; N, 11.07.

3-(4-Bromophenyl)-2-(4-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (4r) m.p. 237–239 °C. FT-IR (KBr, νmax/cm−1): 3317, 3198, 1662, 1611, 1512, 1474, 762. 1H NMR (400 MHz, DMSO-d6): δ (ppm) 8.17 (d, 3H, J = 8 Hz), 7.82 (br s, 1H), 7.71(d, 1H, J = 8), 7.62 (d, 3H, J = 8 Hz), 7.53 (d, 2H, J = 8 Hz), 7.25 (t, 2H, J = 12), 6.77–6.72 (m, 1H), 6.48 (s, 1H). 13C NMR (100 MHz, DMSO-d6) δ ppm = 165.6, 161.2, 146.3, 134.4, 132.2, 129.9, 128.2, 125.6, 122.8, 118.1, 117.2, 116.9, 115.3, 113.6, 68.9, 59.3. HRMS (ESI): m/z [M+H]+ calcd for C20H14N3O3Br: 423.0218; found: 423.0262. Anal. calcd. for C20H14N3O3Br: C, 56.73; H, 3.30; N, 9.92, Found: C, 56.58; H, 3.36; N, 9.82.

3-Benzyl-2-(4-nitrophenyl)-2,3-dihydroquinazolin-4(1H)-one (4s) m.p. 191–192 °C. FT-IR (KBr, νmax/cm−1): 3412, 3017, 2332, 1592, 1512, 1425, 774. 1H NMR (400 MHz, DMSO-d6): δ (ppm) 8.18(d, J = 8, 1H), 7.69(d, J = 8, 1H), 7.55 (d, 2H, J = 8), 7.31–7.20 (m, 8H), 6.72–6.63 (m, 2H), 5.95 (d, 1H, J = 4 Hz), 5.29 (d, 1H, J = 12 Hz), 3.96 (d, J = 12 Hz, 1H). 13C NMR (100 MHz, DMSO-d6) δ ppm = 163.1, 148.4, 141.1, 133.0, 132.4, 128.5, 125.2(2C), 123.8, 123.2, 121.3, 117.5, 113.9, 114.8, 114.2, 68.1, 52.7. HRMS (ESI): m/z [M+H]+ calcd for C21H17N3O3: 359.1269; found: 359.1311. Anal. calcd. for C21H17N3O3: C, 68.29; H, 4.60; N, 11.38, Found: C, 68.19; H, 4.51; N, 11.22.

Notes

Authors’ contributions

JSG have designed the study, participated in discussing results and revised the manuscript. RT and AB have designed, carried out the literature study, performed the assay, conducted the optimization, purification of compounds and prepared the manuscript. Furthermore, performed the related analyses. All authors read and approved the final manuscript.

Acknowledgements

The authors are grateful to university of Kashan for supporting this work by Grant No: 159196/XXII.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

All data are fully available without restriction.

Associated content

Experimental procedure and product characterization data: IR, 1H NMR, 13C NMR and elemental analyses of the selected compounds are reported in Additional file 1.

Consent for publication

The authors declare that the copyright belongs to the journal.

Ethics approval and consent to participate

Not applicable.

Funding

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

References

  1. 1.
    Xu Z, Zhang Y, Fu H, Zhong H, Hong K, Zhu W (2011) Antifungal quinazolinones from marine-derived Bacillus cereus and their preparation. Bioorg Med Chem Lett 21:4005–4007CrossRefGoogle Scholar
  2. 2.
    Hour M-J, Huang L-J, Kuo S-C, Xia Y, Bastow K, Nakanishi Y, Hamel E, Lee K-H (2000) 6-Alkylamino-and 2, 3-dihydro-3′-methoxy-2-phenyl-4-quinazolinones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. J Med Chem 43:4479–4487CrossRefGoogle Scholar
  3. 3.
    Hu Y, Ehli E, Hudziak J, Davies G (2012) Berberine and evodiamine influence serotonin transporter (5-HTT) expression via the 5-HTT-linked polymorphic region. Pharmacogenomics J 12:372–378CrossRefGoogle Scholar
  4. 4.
    Cruz-Lopez O, Conejo-García A, Nunez M C, Kimatrai M, E Garcia-Rubino M, Morales F, Gomez-Perez V, M Campos J (2011) Novel substituted quinazolines for potent EGFR tyrosine kinase inhibitors. Curr Med Chem 18:943–963CrossRefGoogle Scholar
  5. 5.
    Noel R, Gupta N, Vr Pons, Al Goudet, Garcia-Castillo MD, Al Michau, Martinez J, Buisson D-A, Johannes L, Gillet D (2013) N-methyldihydroquinazolinone derivatives of Retro-2 with enhanced efficacy against Shiga toxin. J Med Chem 56:3404–3413CrossRefGoogle Scholar
  6. 6.
    Williams R, Niswender CM, Luo Q, Le U, Conn PJ, Lindsley CW (2009) Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4). Part II: challenges in hit-to-lead. Bioorg Med Chem Lett 19:962–966CrossRefGoogle Scholar
  7. 7.
    Dabiri M, Salehi P, Otokesh S, Baghbanzadeh M, Kozehgary G, Mohammadi AA (2005) Efficient synthesis of mono-and disubstituted 2, 3-dihydroquinazolin-4 (1H)-ones using KAl (SO4)2 12H2O as a reusable catalyst in water and ethanol. Tetrahedron Lett 46:6123–6126CrossRefGoogle Scholar
  8. 8.
    Dabiri M, Salehi P, Baghbanzadeh M, Zolfigol MA, Agheb M, Heydari S (2008) Silica sulfuric acid: an efficient reusable heterogeneous catalyst for the synthesis of 2, 3-dihydroquinazolin-4(1H)-ones in water and under solvent-free conditions. Catal Commun 9:785–788CrossRefGoogle Scholar
  9. 9.
    Song Z, Liu L, Wang Y, Sun X (2012) Efficient synthesis of mono-and disubstituted 2, 3-dihydroquinazolin-4(1H)-ones using aluminum methanesulfonate as a reusable catalyst. Res Chem Intermed 38:1091–1099CrossRefGoogle Scholar
  10. 10.
    Yavari I, Beheshti S (2011) ZnO nanoparticles catalyzed efficient one-pot three-component synthesis of 2, 3-disubstituted quinalolin-4(1H)-ones under solvent-free conditions. J Iran Chem Soc 8:1030–1035CrossRefGoogle Scholar
  11. 11.
    Shaterian HR, Oveisi AR, Honarmand M (2010) Synthesis of 2, 3-dihydroquinazoline-4 (1H)-ones. Synth Commun 40:1231–1242CrossRefGoogle Scholar
  12. 12.
    Salehi P, Dabiri M, Baghbanzadeh M, Bahramnejad M (2006) One-pot, three component synthesis of 2, 3-dihydro-4(1H)-quinazolinones by montmorillonite K-10 as an efficient and reusable catalyst. Synth Commun 36:2287–2292CrossRefGoogle Scholar
  13. 13.
    Patil DR, Ingole PG, Singh K, Dalal DS (2013) Inclusion complex of Isatoic anhydride with β-cyclodextrin and supramolecular one-pot synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones in aqueous media. J Incl Phenom Macrocycl Chem 76:327–332CrossRefGoogle Scholar
  14. 14.
    Song Z, Wan X, Zhao S (2012) A novel catalyst cobalt m-nitrobenzenesulfonate-catalyzed highly efficient synthesis of substituted-quinazolin-4(1H)-ones. Indian J Chem Technol 19:118–123Google Scholar
  15. 15.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710CrossRefGoogle Scholar
  16. 16.
    Beck J, Vartuli J, Roth WJ, Leonowicz M, Kresge C, Schmitt K, Chu C, Olson DH, Sheppard E, McCullen S (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  17. 17.
    Scott BJ, Wirnsberger G, Stucky GD (2001) Mesoporous and mesostructured materials for optical applications. Chem Mater 13:3140–3150CrossRefGoogle Scholar
  18. 18.
    Taguchi A, Schüth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77:1–45CrossRefGoogle Scholar
  19. 19.
    Gracia MD, Balu AM, Campelo JM, Luque R, Marinas JM, Romero AA (2009) Evidences of the in situ generation of highly active Lewis acid species on Zr-SBA-15. Appl Catal 371:85–91CrossRefGoogle Scholar
  20. 20.
    Melero JA, Arsuaga JM, de Frutos P, Iglesias J, Sainz J, Blázquez S (2005) Direct synthesis of titanium-substituted mesostructured materials using non-ionic surfactants and titanocene dichloride. Microporous Mesoporous Mater 86:364–373CrossRefGoogle Scholar
  21. 21.
    Gedeon A, Lassoued A, Bonardet J, Fraissard J (2001) Surface acidity diagnosis and catalytic activity of Al-SBA materials obtained by direct synthesis. Microporous Mesoporous Mater 44:801–806CrossRefGoogle Scholar
  22. 22.
    Bass JD, Katz A (2003) Thermolytic synthesis of imprinted amines in bulk silica. Chem Mater 15:2757–2763CrossRefGoogle Scholar
  23. 23.
    Voit B (2006) Sequential one-pot reactions using the concept of “site isolation”. Angew Chem Int Ed 45:4238–4240CrossRefGoogle Scholar
  24. 24.
    Perozo-Rondón E, Martín-Aranda RM, Casal B, Durán-Valle CJ, Lau WN, Zhang X, Yeung KL (2006) Sonocatalysis in solvent free conditions: an efficient eco-friendly methodology to prepare chalcones using a new type of amino grafted zeolites. Catal Today 114:183–187CrossRefGoogle Scholar
  25. 25.
    Safaei-Ghomi J, Nazemzadeh SH, Shahbazi-Alavi H (2016) Preparation and characterization of Fe3O4@SiO2/APTPOSS core-shell composite nanomagnetics as a novel family of reusable catalysts and their application in the one-pot synthesis of 1, 3-thiazolidin-4-one derivatives. Appl Organomet Chem 30:911–916CrossRefGoogle Scholar
  26. 26.
    Safaei-Ghomi J, Akbarzadeh Z, Ziarati A (2014) A convenient and efficient synthesis of triarylamine derivatives using CuI nanoparticles. RSC Adv 4:16385–16390CrossRefGoogle Scholar
  27. 27.
    Chen J, Wu D, He F, Liu M, Wu H, Ding J, Su W (2008) Gallium (III) triflate-catalyzed one-pot selective synthesis of 2, 3-dihydroquinazolin-4 (1H)-ones and quinazolin-4 (3H)-ones. Tetrahedron Lett 49:3814–3818CrossRefGoogle Scholar
  28. 28.
    Wang M, Zhang TT, Liang Y, Gao JJ (2012) Efficient synthesis of mono-and disubstituted 2, 3-dihydroquinazolin-4 (1H)-ones using copper benzenesulfonate as a reusable catalyst in aqueous solution. Monatsh Chem 143:835–839CrossRefGoogle Scholar
  29. 29.
    Razavi N, Akhlaghinia B (2016) Hydroxyapatite nanoparticles (HAP NPs): a green and efficient heterogeneous catalyst for three-component one-pot synthesis of 2, 3-dihydroquinazolin-4(1H)-one derivatives in aqueous media. New J Chem 40:447–457CrossRefGoogle Scholar
  30. 30.
    Santra S, Rahman M, Roy A, Majee A, Hajra A (2014) Nano-indium oxide: an efficient catalyst for one-pot synthesis of 2, 3-dihydroquinazolin-4(1H)-ones with a greener prospect. Catal Commun 49:52–57CrossRefGoogle Scholar
  31. 31.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036CrossRefGoogle Scholar
  32. 32.
    Li Y, Zhang W, Zhang L, Yang Q, Wei Z, Feng Z, Li C (2004) Direct synthesis of Al-SBA-15 mesoporous materials via hydrolysis-controlled approach. J Phys Chem 108:9739–9744CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors and Affiliations

  • Javad Safaei-Ghomi
    • 1
    Email author
  • Raheleh Teymuri
    • 1
  • Atefeh Bakhtiari
    • 1
  1. 1.Department of Organic Chemistry, Faculty of ChemistryUniversity of KashanKashanIran

Personalised recommendations