Skip to main content

Advertisement

Log in

Burn wound healing and treatment: review and advancements

  • Review
  • Published:
Critical Care Aims and scope Submit manuscript

A Letter to this article was published on 20 January 2016

Abstract

Burns are a prevalent and burdensome critical care problem. The priorities of specialized facilities focus on stabilizing the patient, preventing infection, and optimizing functional recovery. Research on burns has generated sustained interest over the past few decades, and several important advancements have resulted in more effective patient stabilization and decreased mortality, especially among young patients and those with burns of intermediate extent. However, for the intensivist, challenges often exist that complicate patient support and stabilization. Furthermore, burn wounds are complex and can present unique difficulties that require late intervention or life-long rehabilitation. In addition to improvements in patient stabilization and care, research in burn wound care has yielded advancements that will continue to improve functional recovery. This article reviews recent advancements in the care of burn patients with a focus on the pathophysiology and treatment of burn wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TBSA:

Total body surface area

References

  1. Gibran NS, Wiechman S, Meyer W, Edelman L, Fauerbach J, Gibbons L, et al. American Burn Association consensus statements. J Burn Care Res. 2013;34:361–5.

    Article  PubMed  Google Scholar 

  2. Mann R, Heimbach D. Prognosis and treatment of burns. West J Med. 1996;165:215–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. American Burn Association. Burn incidence and treatment in the United States: 2013 fact sheet. 2013. http://www.ameriburn.org/resources_factsheet.php. Accessed 12 May 2015.

  4. Sen S, Palmieri T, Greenhalgh D. Review of burn research for the year 2013. J Burn Care Res. 2014;35:362–8.

    Article  PubMed  Google Scholar 

  5. Wolf SE, Arnoldo BD. The year in burns 2011. Burns. 2012;38:1096–108.

    Article  PubMed  Google Scholar 

  6. Burd A. Research in burns – present and future. Indian J Plast Surg. 2010;43:S11–4.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thomas SJ, Kramer GC, Herndon DN. Burns: military options and tactical solutions. J Trauma. 2003;54:S207–18.

    PubMed  Google Scholar 

  8. American Burn Association. National Burn Repository 2014. 2014. http://www.ameriburn.org/2014NBRAnnualReport.pdf. Accessed 12 May 2015.

  9. Kagan RJ, Peck MD, Ahrenholz DH, Hickerson WL, Holmes J, Korentager R, et al. Surgical management of the burn wound and use of skin substitutes: an expert panel white paper. J Burn Care Res. 2013;34:e60–79.

    Article  PubMed  Google Scholar 

  10. Nisanci M, Eski M, Sahin I, Ilgan S, Isik S. Saving the zone of stasis in burns with activated protein C: an experimental study in rats. Burns. 2010;36:397–402.

    Article  PubMed  Google Scholar 

  11. Robins EV. Burn shock. Crit Care Nurs Clin North Am. 1990;2:299–307.

    Article  CAS  PubMed  Google Scholar 

  12. Pham TN, Cancio LC, Gibran NS, American Burn Association. American Burn Association practice guidelines burn shock resuscitation. J Burn Care Res. 2008;29:257–66.

    Article  PubMed  Google Scholar 

  13. Shirani KZ, Vaughan GM, Mason Jr AD, Pruitt Jr BA. Update on current therapeutic approaches in burns. Shock. 1996;5:4–16.

    Article  CAS  PubMed  Google Scholar 

  14. Dries DJ. Management of burn injuries – recent developments in resuscitation, infection control and outcomes research. Scand J Trauma Resusc Emerg Med. 2009;17:14.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Porter C, Hurren NM, Herndon DN, Borsheim E. Whole body and skeletal muscle protein turnover in recovery from burns. Int J Burns Trauma. 2013;3:9–17.

    PubMed  PubMed Central  Google Scholar 

  16. Farina Jr JA, Rosique MJ, Rosique RG. Curbing inflammation in burn patients. Int J Inflamm. 2013;2013:715645.

    Article  CAS  Google Scholar 

  17. Edgar DW, Fish JS, Gomez M, Wood FM. Local and systemic treatments for acute edema after burn injury: a systematic review of the literature. J Burn Care Res. 2011;32:334–47.

    Article  PubMed  Google Scholar 

  18. Sommer K, Sander AL, Albig M, Weber R, Henrich D, Frank J, et al. Delayed wound repair in sepsis is associated with reduced local pro-inflammatory cytokine expression. PLoS One. 2013;8, e73992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilmore DW, Long JM, Mason Jr AD, Skreen RW, Pruitt Jr BA. Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg. 1974;180:653–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakallioglu AE, Basaran O, Karakayali H, Ozdemir BH, Yucel M, Arat Z, et al. Interactions of systemic immune response and local wound healing in different burn depths: an experimental study on rats. J Burn Care Res. 2006;27:357–66.

    Article  PubMed  Google Scholar 

  21. Pereira CT, Herndon DN. The pharmacologic modulation of the hypermetabolic response to burns. Adv Surg. 2005;39:245–61.

    Article  PubMed  Google Scholar 

  22. Hussain A, Dunn KW. Predicting length of stay in thermal burns: a systematic review of prognostic factors. Burns. 2013;39:1331–40.

    Article  PubMed  Google Scholar 

  23. Colohan SM. Predicting prognosis in thermal burns with associated inhalational injury: a systematic review of prognostic factors in adult burn victims. J Burn Care Res. 2010;31:529–39.

    Article  PubMed  Google Scholar 

  24. Jackson DM. The diagnosis of the depth of burning. Br J Surg. 1953;40:588–96.

    Article  CAS  PubMed  Google Scholar 

  25. Hettiaratchy S, Dziewulski P. ABC of burns: pathophysiology and types of burns. BMJ. 2004;328:1427–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kowalske KJ. Burn wound care. Phys Med Rehab Clin North Am. 2011;22:213–27.

    Article  Google Scholar 

  27. Tan JQ, Zhang HH, Lei ZJ, Ren P, Deng C, Li XY, et al. The roles of autophagy and apoptosis in burn wound progression in rats. Burns. 2013;39:1551–6.

    Article  PubMed  Google Scholar 

  28. Singer AJ, McClain SA, Taira BR, Guerriero JL, Zong W. Apoptosis and necrosis in the ischemic zone adjacent to third degree burns. Acad Emerg Med. 2008;15:549–54.

    Article  PubMed  Google Scholar 

  29. Matylevitch NP, Schuschereba ST, Mata JR, Gilligan GR, Lawlor DF, Goodwin CW, et al. Apoptosis and accidental cell death in cultured human keratinocytes after thermal injury. Am J Pathol. 1998;153:567–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Deniz M, Borman H, Seyhan T, Haberal M. An effective antioxidant drug on prevention of the necrosis of zone of stasis: N-acetylcysteine. Burns. 2013;39:320–5.

    Article  PubMed  Google Scholar 

  31. Tiwari VK. Burn wound: how it differs from other wounds? Indian J Plast Surg. 2012;45:364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–21.

    Article  CAS  PubMed  Google Scholar 

  33. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49:35–43.

    Article  CAS  PubMed  Google Scholar 

  34. Werner S, Krieg T, Smola H. Keratinocyte–fibroblast interactions in wound healing. J Invest Dermatol. 2007;127:998–1008.

    Article  CAS  PubMed  Google Scholar 

  35. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, et al. Epithelialization in wound healing: a comprehensive review. Adv Wound Care. 2014;3:445–64.

    Article  Google Scholar 

  36. Widgerow AD. Cellular/extracellular matrix cross-talk in scar evolution and control. Wound Repair Regen. 2011;19:117–33.

    Article  PubMed  Google Scholar 

  37. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341:738–46.

    Article  CAS  PubMed  Google Scholar 

  38. Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol. 2007;127:526–37.

    Article  CAS  PubMed  Google Scholar 

  39. Snowden JM. Wound closure: an analysis of the relative contributions of contraction and epithelialization. J Surg Res. 1984;37:453–63.

    Article  CAS  PubMed  Google Scholar 

  40. Shih B, Garside E, McGrouther DA, Bayat A. Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Repair Regen. 2010;18:139–53.

    Article  PubMed  Google Scholar 

  41. Claudinot S, Nicolas M, Oshima H, Rochat A, Barrandon Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc Natl Acad Sci U S A. 2005;102:14677–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ito M, Liu Y, Yang Z, Nguyen J, Liang F, Morris RJ, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11:1351–4.

    Article  CAS  PubMed  Google Scholar 

  43. Curran TA, Ghahary A. Evidence of a role for fibrocyte and keratinocyte-like cells in the formation of hypertrophic scars. J Burn Care Res. 2013;34:227–31.

    Article  PubMed  Google Scholar 

  44. Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science. 2013;339:166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arturson G. Forty years in burns research – the postburn inflammatory response. Burns. 2000;26:599–604.

    Article  CAS  PubMed  Google Scholar 

  46. Szpaderska AM, DiPietro LA. Inflammation in surgical wound healing: friend or foe? Surgery. 2005;137:571–3.

    Article  PubMed  Google Scholar 

  47. Franz MG, Steed DL, Robson MC. Optimizing healing of the acute wound by minimizing complications. Curr Probl Surg. 2007;44:691–763.

    Article  PubMed  Google Scholar 

  48. Stubhaug A, Romundstad L, Kaasa T, Breivik H. Methylprednisolone and ketorolac rapidly reduce hyperalgesia around a skin burn injury and increase pressure pain thresholds. Acta Anaesthesiol Scand. 2007;51:1138–46.

    CAS  PubMed  Google Scholar 

  49. Huang G, Liang B, Liu G, Liu K, Ding Z. Low dose of glucocorticoid decreases the incidence of complications in severely burned patients by attenuating systemic inflammation. J Crit Care. 2015;30:e7–11.

    Article  Google Scholar 

  50. Janzekovic Z. A new concept in the early excision and immediate grafting of burns. J Trauma. 1970;10:1103–8.

    Article  CAS  PubMed  Google Scholar 

  51. Orgill DP. Excision and skin grafting of thermal burns. N Engl J Med. 2009;360:893–901.

    Article  CAS  PubMed  Google Scholar 

  52. Barret JP, Herndon DN. Effects of burn wound excision on bacterial colonization and invasion. Plast Reconstruct Surg. 2003;111:744–50. discussion 751–2.

    Article  Google Scholar 

  53. Cramer LM, McCormack CR, Carroll DB. Progressive partial excision and early graftin in lethal burns. Plast Reconstruct Surg Transplant Bull. 1962;30:595–9.

    Article  CAS  Google Scholar 

  54. Engrav LH, Heimbach DM, Reus JL, Harnar TJ, Marvin JA. Early excision and grafting vs. nonoperative treatment of burns of indeterminant depth: a randomized prospective study. J Trauma. 1983;23:1001–4.

    Article  CAS  PubMed  Google Scholar 

  55. Stein C, Kuchler S. Non-analgesic effects of opioids: peripheral opioid effects on inflammation and wound healing. Curr Pharm Des. 2012;18:6053–69.

    Article  CAS  PubMed  Google Scholar 

  56. Brack A, Rittner HL, Stein C. Immunosuppressive effects of opioids – clinical relevance. J Neuroimmune Pharmacol. 2011;6:490–502.

    Article  PubMed  Google Scholar 

  57. Rook JM, Hasan W, McCarson KE. Morphine-induced early delays in wound closure: involvement of sensory neuropeptides and modification of neurokinin receptor expression. Biochem Pharmacol. 2009;77:1747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rook JM, McCarson KE. Delay of cutaneous wound closure by morphine via local blockade of peripheral tachykinin release. Biochem Pharmacol. 2007;74:752–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bigliardi PL, Buchner S, Rufli T, Bigliardi-Qi M. Specific stimulation of migration of human keratinocytes by mu-opiate receptor agonists. J Recept Signal Transduct Res. 2002;22:191–9.

    Article  CAS  PubMed  Google Scholar 

  60. Stein C, Kuchler S. Targeting inflammation and wound healing by opioids. Trends Pharmacol Sci. 2013;34:303–12.

    Article  CAS  PubMed  Google Scholar 

  61. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19:403–34.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Teplitz C, Davis D, Walker HL, Raulston GL, Mason Jr AD, Moncrief JA. Pseudomonas burn wound sepsis. II Hematogenous infection at the junction of the burn wound and the unburned hypodermis. J Surg Res. 1964;4:217–22.

    Article  CAS  PubMed  Google Scholar 

  63. Teplitz C, Davis D, Mason Jr AD, Moncrief JA. Pseudomonas burn wound sepsis. I Pathogenesis of experimental pseudomonas burn wound sepsis. J Surg Res. 1964;4:200–16.

    Article  CAS  PubMed  Google Scholar 

  64. Coban YK. Infection control in severely burned patients. World J Crit Care Med. 2012;1:94–101.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Branski LK, Al-Mousawi A, Rivero H, Jeschke MG, Sanford AP, Herndon DN. Emerging infections in burns. Surg Infect. 2009;10:389–97.

    Article  Google Scholar 

  66. Shupp JW, Pavlovich AR, Jeng JC, Pezzullo JC, Oetgen WJ, Jaskille AD, et al. Epidemiology of bloodstream infections in burn-injured patients: a review of the national burn repository. J Burn Care Res. 2010;31:521–8.

    Article  PubMed  Google Scholar 

  67. Bloemsma GC, Dokter J, Boxma H, Oen IM. Mortality and causes of death in a burn centre. Burns. 2008;34:1103–7.

    Article  CAS  PubMed  Google Scholar 

  68. Chipp E, Milner CS, Blackburn AV. Sepsis in burns: a review of current practice and future therapies. Ann Plastic Surg. 2010;65:228–36.

    Article  CAS  Google Scholar 

  69. Williams FN, Herndon DN, Hawkins HK, Lee JO, Cox RA, Kulp GA, et al. The leading causes of death after burn injury in a single pediatric burn center. Crit Care. 2009;13:R183.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mann EA, Wood GL, Wade CE. Use of procalcitonin for the detection of sepsis in the critically ill burn patient: a systematic review of the literature. Burns. 2011;37:549–58.

    Article  PubMed  Google Scholar 

  71. Greenhalgh DG, Saffle JR, Holmes JH, Gamelli RL, Palmieri TL, Horton JW, et al. American Burn Association consensus conference to define sepsis and infection in burns. J Burn Care Res. 2007;28:776–90.

    Article  PubMed  Google Scholar 

  72. D'Avignon LC, Chung KK, Saffle JR, Renz EM, Cancio LC. Prevention of Combat-Related Infections Guidelines Panel. Prevention of infections associated with combat-related burn injuries. J Trauma. 2011;71:S282–9.

    CAS  PubMed  Google Scholar 

  73. D'Avignon LC, Hogan BK, Murray CK, Loo FL, Hospenthal DR, Cancio LC, et al. Contribution of bacterial and viral infections to attributable mortality in patients with severe burns: an autopsy series. Burns. 2010;36:773–9.

    Article  PubMed  Google Scholar 

  74. Hospenthal DR, Murray CK, Andersen RC, Bell RB, Calhoun JH, Cancio LC, et al. Guidelines for the prevention of infections associated with combat-related injuries: 2011 update: endorsed by the Infectious Diseases Society of America and the Surgical Infection Society. J Trauma. 2011;71:S210–34.

    CAS  PubMed  Google Scholar 

  75. Hospenthal DR, Murray CK, Andersen RC, Blice JP, Calhoun JH, Cancio LC, et al. Guidelines for the prevention of infection after combat-related injuries. J Trauma. 2008;64:S211–20.

    PubMed  Google Scholar 

  76. Rafla K, Tredget EE. Infection control in the burn unit. Burns. 2011;37:5–15.

    Article  PubMed  Google Scholar 

  77. Rowley-Conwy G. Infection prevention and treatment in patients with major burn injuries. Nurs Stand. 2010;25:51–2. 54, 56–8 passim.

    Article  CAS  PubMed  Google Scholar 

  78. Brown TP, Cancio LC, McManus AT, Mason Jr AD. Survival benefit conferred by topical antimicrobial preparations in burn patients: a historical perspective. J Trauma. 2004;56:863–6.

    Article  PubMed  Google Scholar 

  79. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14:498–509.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Horvath EE, Murray CK, Vaughan GM, Chung KK, Hospenthal DR, Wade CE, et al. Fungal wound infection (not colonization) is independently associated with mortality in burn patients. Ann Surg. 2007;245:978–85.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Herndon DN, Tompkins RG. Support of the metabolic response to burn injury. Lancet. 2004;363:1895–902.

    Article  CAS  PubMed  Google Scholar 

  82. Williams FN, Herndon DN, Jeschke MG. The hypermetabolic response to burn injury and interventions to modify this response. Clin Plast Surg. 2009;36:583–96.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Andel H, Kamolz LP, Horauf K, Zimpfer M. Nutrition and anabolic agents in burned patients. Burns. 2003;29:592–5.

    Article  PubMed  Google Scholar 

  84. Abdullahi A, Jeschke MG. Nutrition and anabolic pharmacotherapies in the care of burn patients. Nutr Clin Pract. 2014;29:621–30.

    Article  PubMed  Google Scholar 

  85. Hart DW, Wolf SE, Chinkes DL, Beauford RB, Mlcak RP, Heggers JP, et al. Effects of early excision and aggressive enteral feeding on hypermetabolism, catabolism, and sepsis after severe burn. J Trauma. 2003;54:755–61. discussion 761–4.

    Article  CAS  PubMed  Google Scholar 

  86. Mosier MJ, Pham TN, Klein MB, Gibran NS, Arnoldo BD, Gamelli RL, et al. Early enteral nutrition in burns: compliance with guidelines and associated outcomes in a multicenter study. J Burn Care Res. 2011;32:104–9.

    Article  PubMed  Google Scholar 

  87. Mecott GA, Al-Mousawi AM, Gauglitz GG, Herndon DN, Jeschke MG. The role of hyperglycemia in burned patients: evidence-based studies. Shock. 2010;33:5–13.

    Article  CAS  PubMed  Google Scholar 

  88. Gore DC, Chinkes DL, Hart DW, Wolf SE, Herndon DN, Sanford AP. Hyperglycemia exacerbates muscle protein catabolism in burn-injured patients. Crit Care Med. 2002;30:2438–42.

    Article  CAS  PubMed  Google Scholar 

  89. Kulp GA, Tilton RG, Herndon DN, Jeschke MG. Hyperglycemia exacerbates burn-induced liver inflammation via noncanonical nuclear factor-kappaB pathway activation. Mol Med. 2012;18:948–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cunningham-Rundles S, McNeeley DF, Moon A. Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol. 2005;115:1119–28. quiz 1129.

    Article  CAS  PubMed  Google Scholar 

  91. Schwacha MG, Chaudry IH. The cellular basis of post-burn immunosuppression: macrophages and mediators. Int J Mol Med. 2002;10:239–43.

    CAS  PubMed  Google Scholar 

  92. Ferrando AA, Chinkes DL, Wolf SE, Matin S, Herndon DN, Wolfe RR. A submaximal dose of insulin promotes net skeletal muscle protein synthesis in patients with severe burns. Ann Surg. 1999;229:11–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hrynyk M, Neufeld RJ. Insulin and wound healing. Burns. 2014;40:1433–46.

    Article  PubMed  Google Scholar 

  94. Pidcoke HF, Baer LA, Wu X, Wolf SE, Aden JK, Wade CE. Insulin effects on glucose tolerance, hypermetabolic response, and circadian-metabolic protein expression in a rat burn and disuse model. Am J Physiol Regul Integr Comp Physiol. 2014;307:R1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pidcoke HF, Wade CE, Wolf SE. Insulin and the burned patient. Crit Care Med. 2007;35:S524–30.

    Article  CAS  PubMed  Google Scholar 

  96. Sakurai Y, Aarsland A, Herndon DN, Chinkes DL, Pierre E, Nguyen TT, et al. Stimulation of muscle protein synthesis by long-term insulin infusion in severely burned patients. Ann Surg. 1995;222:283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hart DW, Wolf SE, Ramzy PI, Chinkes DL, Beauford RB, Ferrando AA, et al. Anabolic effects of oxandrolone after severe burn. Ann Surg. 2001;233:556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tuvdendorj D, Chinkes DL, Zhang XJ, Suman OE, Aarsland A, Ferrando A, et al. Long-term oxandrolone treatment increases muscle protein net deposition via improving amino acid utilization in pediatric patients 6 months after burn injury. Surgery. 2011;149:645–53.

    Article  PubMed  Google Scholar 

  99. Wolf SE, Edelman LS, Kemalyan N, Donison L, Cross J, Underwood M, et al. Effects of oxandrolone on outcome measures in the severely burned: a multicenter prospective randomized double-blind trial. J Burn Care Res. 2006;27:131–9. discussion 140–1.

    Article  PubMed  Google Scholar 

  100. Wolf SE, Thomas SJ, Dasu MR, Ferrando AA, Chinkes DL, Wolfe RR, et al. Improved net protein balance, lean mass, and gene expression changes with oxandrolone treatment in the severely burned. Ann Surg. 2003;237:801–10. discussion 810–1.

    PubMed  PubMed Central  Google Scholar 

  101. Bains JW, Crawford DT, Ketcham AS. Effect of chronic anemia on wound tensile strength: correlation with blood volume, total red blood cell volume and proteins. Ann Surg. 1966;164:243–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Agarwal P, Prajapati B, Sharma D. Evaluation of skin graft take following post-burn raw area in normovolaemic anaemia. Indian J Plast Surg. 2009;42:195–8.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Namdar T, Stollwerck PL, Stang FH, Eisenbeiss W, Siemers F, Mailander P, et al. Impact of hypernatremia on burn wound healing: results of an exploratory, retrospective study. Ostomy Wound Manage. 2011;57:30–4.

    PubMed  Google Scholar 

  104. Nitzschke SL, Aden JK, Serio-Melvin ML, Shingleton SK, Chung KK, Waters JA, et al. Wound healing trajectories in burn patients and their impact on mortality. J Burn Care Res. 2014;35:474–9.

    Article  PubMed  Google Scholar 

  105. Desai MH, Herndon DN, Broemeling L, Barrow RE, Nichols Jr RJ, Rutan RL. Early burn wound excision significantly reduces blood loss. Ann Surg. 1990;211:753–9. discussion 759–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Herndon DN, Barrow RE, Rutan RL, Rutan TC, Desai MH, Abston S. A comparison of conservative versus early excision. Therapies in severely burned patients. Ann Surg. 1989;209:547–52. discussion 552–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Saaiq M, Zaib S, Ahmad S. Early excision and grafting versus delayed excision and grafting of deep thermal burns up to 40 % total body surface area: a comparison of outcome. Ann Burns Fire Disasters. 2012;25:143–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Vinita P, Khare NA, Chandramouli M, Nilesh S, Sumit B. Comparative analysis of early excision and grafting vs delayed grafting in burn patients in a developing country. J Burn Care Res. 2014; doi:10.1097/BCR.0b013e31827e4ed6.

  109. Ong YS, Samuel M, Song C. Meta-analysis of early excision of burns. Burns. 2006;32:145–50.

    Article  PubMed  Google Scholar 

  110. Schwanholt C, Greenhalgh DG, Warden GD. A comparison of full-thickness versus split-thickness autografts for the coverage of deep palm burns in the very young pediatric patient. J Burn Care Rehab. 1993;14:29–33.

    Article  CAS  Google Scholar 

  111. Akan M, Yildirim S, Misirlioglu A, Ulusoy G, Akoz T, Avci G. An alternative method to minimize pain in the split-thickness skin graft donor site. Plast Reconstruct Surg. 2003;111:2243–9.

    Article  Google Scholar 

  112. Voineskos SH, Ayeni OA, McKnight L, Thoma A. Systematic review of skin graft donor-site dressings. Plast Reconstruct Surg. 2009;124:298–306.

    Article  CAS  Google Scholar 

  113. Hermans MH. Preservation methods of allografts and their (lack of) influence on clinical results in partial thickness burns. Burns. 2011;37:873–81.

    Article  PubMed  Google Scholar 

  114. Hermans MH. Porcine xenografts vs. (cryopreserved) allografts in the management of partial thickness burns: is there a clinical difference? Burns. 2014;40:408–15.

    Article  PubMed  Google Scholar 

  115. Ehrenreich M, Ruszczak Z. Tissue-engineered temporary wound coverings. Important options for the clinician. Acta Dermatovenerol Alp Pannonica Adriat. 2006;15:5–13.

    PubMed  Google Scholar 

  116. Ehrenreich M, Ruszczak Z. Update on tissue-engineered biological dressings. Tissue Eng. 2006;12:2407–24.

    Article  CAS  PubMed  Google Scholar 

  117. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K. Skin tissue engineering – in vivo and in vitro applications. Clin Plast Surg. 2012;39:33–58.

    Article  PubMed  Google Scholar 

  118. Mansbridge J. Skin tissue engineering. J Biomater Sci Polym Ed. 2008;19:955–68.

    Article  CAS  PubMed  Google Scholar 

  119. Mansbridge JN. Tissue-engineered skin substitutes in regenerative medicine. Curr Opin Biotechnol. 2009;20:563–7.

    Article  CAS  PubMed  Google Scholar 

  120. Catalano E, Cochis A, Varoni E, Rimondini L, Azzimonti B. Tissue-engineered skin substitutes: an overview. J Artif. 2013;16:397–403.

    Article  CAS  Google Scholar 

  121. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7:229–58.

    Article  CAS  PubMed  Google Scholar 

  122. Atiyeh BS, Costagliola M. Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns. 2007;33:405–13.

    Article  PubMed  Google Scholar 

  123. Fang T, Lineaweaver WC, Sailes FC, Kisner C, Zhang F. Clinical application of cultured epithelial autografts on acellular dermal matrices in the treatment of extended burn injuries. Ann Plast Surg. 2014;73:509–15.

    Article  CAS  PubMed  Google Scholar 

  124. Jeschke MG, Finnerty CC, Shahrokhi S, Branski LK, Dibildox M, Organization ABA, et al. Wound coverage technologies in burn care: novel techniques. J Burn Care Res. 2013;34:612–20.

    Article  PubMed  Google Scholar 

  125. Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol. 2005;23:403–12.

    Article  PubMed  Google Scholar 

  126. Kampmann A, Lindhorst D, Schumann P, Zimmerer R, Kokemuller H, Rucker M, et al. Additive effect of mesenchymal stem cells and VEGF to vascularization of PLGA scaffolds. Microvasc Res. 2013;90:71–9.

    Article  CAS  PubMed  Google Scholar 

  127. Park KM, Gerecht S. Harnessing developmental processes for vascular engineering and regeneration. Development. 2014;141:2760–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Broussard KC, Powers JG. Wound dressings: selecting the most appropriate type. Am J Clin Dermatol. 2013;14:449–59.

    Article  PubMed  Google Scholar 

  129. Wasiak J, Cleland H, Campbell F, Spinks A. Dressings for superficial and partial thickness burns. Cochrane Database Syst Rev. 2013;3, CD002106.

    Google Scholar 

  130. Aziz Z, Abu SF, Chong NJ. A systematic review of silver-containing dressings and topical silver agents (used with dressings) for burn wounds. Burns. 2012;38:307–18.

    Article  CAS  PubMed  Google Scholar 

  131. Nikkhah D, Gilbert P, Booth S, Dheansa B. Should we be using silver based compounds for donor site dressing in thermal burns? Burns. 2013;39:1324–5.

    Article  PubMed  Google Scholar 

  132. Abboud EC, Legare TB, Settle JC, Boubekri AM, Barillo DJ, Marcet JE, et al. Do silver-based wound dressings reduce pain? A prospective study and review of the literature. Burns. 2014;40:S40–7.

    Article  PubMed  Google Scholar 

  133. Navarro FA, Stoner ML, Park CS, Huertas JC, Lee HB, Wood FM, et al. Sprayed keratinocyte suspensions accelerate epidermal coverage in a porcine microwound model. J Burn Care Rehab. 2000;21:513–8.

    Article  CAS  Google Scholar 

  134. Wood FM, Kolybaba ML, Allen P. The use of cultured epithelial autograft in the treatment of major burn wounds: eleven years of clinical experience. Burns. 2006;32:538–44.

    Article  CAS  PubMed  Google Scholar 

  135. Wood FM, Kolybaba ML, Allen P. The use of cultured epithelial autograft in the treatment of major burn injuries: a critical review of the literature. Burns. 2006;32:395–401.

    Article  CAS  PubMed  Google Scholar 

  136. Tenenhaus M, Rennekampff HO. Surgical advances in burn and reconstructive plastic surgery: new and emerging technologies. Clin Plast Surg. 2012;39:435–43.

    Article  PubMed  Google Scholar 

  137. Tausche AK, Skaria M, Bohlen L, Liebold K, Hafner J, Friedlein H, et al. An autologous epidermal equivalent tissue-engineered from follicular outer root sheath keratinocytes is as effective as split-thickness skin autograft in recalcitrant vascular leg ulcers. Wound Repair Regen. 2003;11:248–52.

    Article  PubMed  Google Scholar 

  138. Bisson F, Rochefort E, Lavoie A, Larouche D, Zaniolo K, Simard-Bisson C, et al. Irradiated human dermal fibroblasts are as efficient as mouse fibroblasts as a feeder layer to improve human epidermal cell culture lifespan. Int J Mol Sci. 2013;14:4684–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Idrus RB, Rameli MA, Low KC, Law JX, Chua KH, Latiff MB, et al. Full-thickness skin wound healing using autologous keratinocytes and dermal fibroblasts with fibrin: bilayered versus single-layered substitute. Adv Skin Wound Care. 2014;27:171–80.

    Article  PubMed  Google Scholar 

  140. Auxenfans C, Menet V, Catherine Z, Shipkov H, Lacroix P, Bertin-Maghit M, et al. Cultured autologous keratinocytes in the treatment of large and deep burns: a retrospective study over 15 years. Burns. 2015;41:71–9.

    Article  PubMed  Google Scholar 

  141. Auxenfans C, Shipkov H, Bach C, Catherine Z, Lacroix P, Bertin-Maghit M, et al. Cultured allogenic keratinocytes for extensive burns: a retrospective study over 15 years. Burns. 2014;40:82–8.

    Article  PubMed  Google Scholar 

  142. van der Veer WM, Bloemen MC, Ulrich MM, Molema G, van Zuijlen PP, Middelkoop E, et al. Potential cellular and molecular causes of hypertrophic scar formation. Burns. 2009;35:15–29.

    Article  PubMed  Google Scholar 

  143. Lewis CJ. Stem cell application in acute burn care and reconstruction. J Wound Care. 2013;22:7–8. 10, 12–6.

    Article  CAS  PubMed  Google Scholar 

  144. Badiavas EV. The potential of bone marrow cells to orchestrate homeostasis and healing in skin. Blood Cells Mol Dis. 2004;32:21–3.

    Article  CAS  PubMed  Google Scholar 

  145. Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol. 2003;196:245–50.

    Article  CAS  PubMed  Google Scholar 

  146. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008;180:2581–7.

    Article  CAS  PubMed  Google Scholar 

  147. Bey E, Prat M, Duhamel P, Benderitter M, Brachet M, Trompier F, et al. Emerging therapy for improving wound repair of severe radiation burns using local bone marrow-derived stem cell administrations. Wound Repair Regen. 2010;18:50–8.

    Article  PubMed  Google Scholar 

  148. Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007;48:15–24.

    Article  CAS  PubMed  Google Scholar 

  149. Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y, et al. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol. 2005;25:2542–7.

    Article  CAS  PubMed  Google Scholar 

  150. Kurata S, Itami S, Terashi H, Takayasu S. Successful transplantation of cultured human outer root sheath cells as epithelium. Ann Plast Surg. 1994;33:290–4.

    Article  CAS  PubMed  Google Scholar 

  151. Navsaria HA, Ojeh NO, Moiemen N, Griffiths MA, Frame JD. Reepithelialization of a full-thickness burn from stem cells of hair follicles micrografted into a tissue-engineered dermal template (Integra). Plast Reconstruct Surg. 2004;113:978–81.

    Article  Google Scholar 

  152. Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells. 2008;26:2713–23.

    Article  PubMed  Google Scholar 

  153. Natesan S, Wrice NL, Baer DG, Christy RJ. Debrided skin as a source of autologous stem cells for wound repair. Stem Cells. 2011;29:1219–30.

    Article  CAS  PubMed  Google Scholar 

  154. Chan RK, Zamora DO, Wrice NL, Baer DG, Renz EM, Christy RJ, et al. Development of a vascularized skin construct using adipose-derived stem cells from debrided burned skin. Stem Cells Int. 2012;2012:841203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Williams JF, King BT, Aden JK, Serio-Melvin M, Chung KK, Fenrich CA, et al. Comparison of traditional burn wound mapping with a computerized program. J Burn Care Res. 2013;34:e29–35.

    Article  PubMed  Google Scholar 

  156. Brown TS, Safford S, Caramanica J, Elster EA. Biomarker use in tailored combat casualty care. Biomark Med. 2010;4:465–73.

    Article  PubMed  Google Scholar 

  157. Hawksworth JS, Stojadinovic A, Gage FA, Tadaki DK, Perdue PW, Forsberg J, et al. Inflammatory biomarkers in combat wound healing. Ann Surg. 2009;250:1002–7.

    Article  PubMed  Google Scholar 

  158. Hahm G, Glaser JJ, Elster EA. Biomarkers to predict wound healing: the future of complex war wound management. Plast Reconstruct Surg. 2011;127:21S–6S.

    Article  CAS  Google Scholar 

  159. Chromy BA, Eldridge A, Forsberg JA, Brown TS, Kirkup BC, Elster E, et al. Proteomic sample preparation for blast wound characterization. Proteome Sci. 2014;12:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Chromy BA, Eldridge A, Forsberg JA, Brown TS, Kirkup BC, Jaing C, et al. Wound outcome in combat injuries is associated with a unique set of protein biomarkers. J Transl Med. 2013;11:281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Forsberg JA, Potter BK, Polfer EM, Safford SD, Elster EA. Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds? Clin Orthop Relat Res. 2014;472:2845–54.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Mikhal'chik EV, Piterskaya JA, Budkevich LY, Pen'kov LY, Facchiano A, De Luca C, et al. Comparative study of cytokine content in the plasma and wound exudate from children with severe burns. Bull Exp Biol Med. 2009;148:771–5.

    Article  CAS  PubMed  Google Scholar 

  163. Widgerow AD, King K, Tussardi IT, Banyard DA, Chiang R, Awad A, et al. The burn wound exudate – an under-utilized resource. Burns. 2015;41:11–7.

    Article  PubMed  Google Scholar 

  164. Prager MD, Sabeh F, Baxter CR, Atiles L, Hartline B. Dipeptidyl peptidase IV and aminopeptidase in burn wound exudates: implications for wound healing. J Trauma. 1994;36:629–33.

    Article  CAS  PubMed  Google Scholar 

  165. Mauskar NA, Sood S, Travis TE, Matt SE, Mino MJ, Burnett MS, et al. Donor site healing dynamics: molecular, histological, and noninvasive imaging assessment in a porcine model. J Burn Care Res. 2013;34:549–62.

    Article  PubMed  Google Scholar 

  166. Kaiser M, Yafi A, Cinat M, Choi B, Durkin AJ. Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities. Burns. 2011;37:377–86.

    Article  PubMed  Google Scholar 

  167. Arbab MH, Dickey TC, Winebrenner DP, Chen A, Klein MB, Mourad PD. Terahertz reflectometry of burn wounds in a rat model. Biomed Opt Express. 2011;2:2339–47.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Cross KM, Leonardi L, Gomez M, Freisen JR, Levasseur MA, Schattka BJ, et al. Noninvasive measurement of edema in partial thickness burn wounds. J Burn Care Res. 2009;30:807–17.

    Article  PubMed  Google Scholar 

  169. Cross KM, Leonardi L, Payette JR, Gomez M, Levasseur MA, Schattka BJ, et al. Clinical utilization of near-infrared spectroscopy devices for burn depth assessment. Wound Repair Regen. 2007;15:332–40.

    Article  CAS  PubMed  Google Scholar 

  170. Nguyen JQ, Crouzet C, Mai T, Riola K, Uchitel D, Liaw LH, et al. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity. J Biomed Opt. 2013;18:66010.

    Article  PubMed  Google Scholar 

  171. Sowa MG, Leonardi L, Payette JR, Cross KM, Gomez M, Fish JS. Classification of burn injuries using near-infrared spectroscopy. J Biomed Opt. 2006;11:054002.

    Article  PubMed  Google Scholar 

  172. Sowa MG, Leonardi L, Payette JR, Fish JS, Mantsch HH. Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period. Burns. 2001;27:241–9.

    Article  CAS  PubMed  Google Scholar 

  173. Devgan L, Bhat S, Aylward S, Spence RJ. Modalities for the assessment of burn wound depth. J Burns Wounds. 2006;5, e2.

    PubMed  PubMed Central  Google Scholar 

  174. Pape SA, Skouras CA, Byrne PO. An audit of the use of laser Doppler imaging (LDI) in the assessment of burns of intermediate depth. Burns. 2001;27:233–9.

    Article  CAS  PubMed  Google Scholar 

  175. Hoeksema H, Van de Sijpe K, Tondu T, Hamdi M, Van Landuyt K, Blondeel P, et al. Accuracy of early burn depth assessment by laser Doppler imaging on different days post burn. Burns. 2009;35:36–45.

    Article  PubMed  Google Scholar 

  176. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311:806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Goutos I, Sadideen H, Pandya AA, Ghosh SJ. Obesity and burns. J Burn Care Res. 2012;33:471–82.

    Article  PubMed  Google Scholar 

  178. Neaman KC, Andres LA, McClure AM, Burton ME, Kemmeter PR, Ford RD. A new method for estimation of involved BSAs for obese and normal-weight patients with burn injury. J Burn Care Res. 2011;32:421–8.

    Article  PubMed  Google Scholar 

  179. Liodaki E, Senyaman O, Stollwerck PL, Mollmeier D, Mauss KL, Mailander P, et al. Obese patients in a burn care unit: a major challenge. Burns. 2014;40:1738–42.

    Article  PubMed  Google Scholar 

  180. Keck M, Lumenta DB, Andel H, Kamolz LP, Frey M. Burn treatment in the elderly. Burns. 2009;35:1071–9.

    Article  CAS  PubMed  Google Scholar 

  181. Lewandowski R, Pegg S, Fortier K, Skimmings A. Burn injuries in the elderly. Burns. 1993;19:513–5.

    Article  CAS  PubMed  Google Scholar 

  182. Hunt JL, Purdue GF. The elderly burn patient. Am J Surg. 1992;164:472–6.

    Article  CAS  PubMed  Google Scholar 

  183. Williams GJ, Herndon DN. Modulating the hypermetabolic response to burn injuries. J Wound Care. 2002;11:87–9.

    Article  CAS  PubMed  Google Scholar 

  184. Roberts G, Lloyd M, Parker M, Martin R, Philp B, Shelley O, et al. The Baux score is dead. Long live the Baux score: a 27-year retrospective cohort study of mortality at a regional burns service. J Trauma Acute Care Surg. 2012;72:251–6.

    Article  PubMed  Google Scholar 

  185. Nordlund MJ, Pham TN, Gibran NS. Micronutrients after burn injury: a review. J Burn Care Res. 2014;35:121–33.

    Article  PubMed  Google Scholar 

  186. Pintaudi AM, Tesoriere L, D'Arpa N, D'Amelio L, D'Arpa D, Bongiorno A, et al. Oxidative stress after moderate to extensive burning in humans. Free Radic Res. 2000;33:139–46.

    Article  CAS  PubMed  Google Scholar 

  187. Vinha PP, Martinez EZ, Vannucchi H, Marchini JS, Farina Jr JA, Jordao Jr AA, et al. Effect of acute thermal injury in status of serum vitamins, inflammatory markers, and oxidative stress markers: preliminary data. J Burn Care Res. 2013;34:e87–91.

    Article  PubMed  Google Scholar 

  188. Aida T, Murata J, Asano G, Kanda Y, Yoshino Y. Effects of polyprenoic acid on thermal injury. Br J Exp Pathol. 1987;68:351–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Nickle SB, Peterson N, Peterson M. Updated physician's guide to the off-label uses of oral isotretinoin. J Clin Aesthet Dermatol. 2014;7:22–34.

    PubMed  PubMed Central  Google Scholar 

  190. Dematte MF, Gemperli R, Salles AG, Dolhnikoff M, Lancas T, Saldiva PH, et al. Mechanical evaluation of the resistance and elastance of post-burn scars after topical treatment with tretinoin. Clinics. 2011;66:1949–54.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Salles AG, Gemperli R, Toledo PN, Ferreira MC. Combined tretinoin and glycolic acid treatment improves mouth opening for postburn patients. Aesthet Plast Surg. 2006;30:356–62.

    Article  Google Scholar 

  192. Macias-Barragan J, Sandoval-Rodriguez A, Navarro-Partida J, Armendariz-Borunda J. The multifaceted role of pirfenidone and its novel targets. Fibrogenesis Tissue Repair. 2010;3:16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Jung KI, Choi JS, Kim HK, Shin SY. Effects of an anti-transforming growth factor-beta agent (pirfenidone) on strabismus surgery in rabbits. Curr Eye Res. 2012;37:770–6.

    Article  CAS  PubMed  Google Scholar 

  194. Zhong H, Sun G, Lin X, Wu K, Yu M. Evaluation of pirfenidone as a new postoperative antiscarring agent in experimental glaucoma surgery. Invest Ophthalmol Vis Sci. 2011;52:3136–42.

    Article  CAS  PubMed  Google Scholar 

  195. Chowdhury S, Guha R, Trivedi R, Kompella UB, Konar A, Hazra S. Pirfenidone nanoparticles improve corneal wound healing and prevent scarring following alkali burn. PLoS One. 2013;8, e70528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Cianci P, Sato R. Adjunctive hyperbaric oxygen therapy in the treatment of thermal burns: a review. Burns. 1994;20:5–14.

    Article  CAS  PubMed  Google Scholar 

  197. Cianci P, Williams C, Lueders H, Lee H, Shapiro R, Sexton J, et al. Adjunctive hyperbaric oxygen in the treatment of thermal burns. An economic analysis. J Burn Care Rehab. 1990;11:140–3.

    Article  CAS  Google Scholar 

  198. Selcuk CT, Ozalp B, Durgun M, Tekin A, Akkoc MF, Alabalik U, et al. The effect of hyperbaric oxygen treatment on the healing of burn wounds in nicotinized and nonnicotinized rats. J Burn Care Res. 2013;34:e237–43.

    Article  PubMed  Google Scholar 

  199. Cianci P, Slade Jr JB, Sato RM, Faulkner J. Adjunctive hyperbaric oxygen therapy in the treatment of thermal burns. Undersea Hyperb Med. 2013;40:89–108.

    PubMed  Google Scholar 

  200. Eskes A, Vermeulen H, Lucas C, Ubbink DT. Hyperbaric oxygen therapy for treating acute surgical and traumatic wounds. Cochrane Database Syst Rev. 2013;12, CD008059.

    Google Scholar 

  201. Eskes AM, Ubbink DT, Lubbers MJ, Lucas C, Vermeulen H. Hyperbaric oxygen therapy: solution for difficult to heal acute wounds? Systematic review. World J Surg. 2011;35:535–42.

    Article  PubMed  Google Scholar 

  202. Wolf SE, Tompkins RG, Herndon DN. On the horizon: research priorities in burns for the next decade. Surg Clin North Am. 2014;94:917–30.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff of the Clinical Trials task area at the US Army Institute of Surgical Research for administrative support. The authors would also like to thank Dr Harold Klemcke for critical review of this manuscript. This work was supported in part by an appointment (MPR) to the Postgraduate Research Participation Program and an appointment (LCC) to the Knowledge Preservation Program at the US Army Institute of Surgical Research administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and US Army Medical Research and Materiel Command.

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. Rowan.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MPR and KKC outlined the paper. MPR wrote all drafts of the manuscript, with primary editing and revision support from LCC. All authors contributed information for the manuscript, participated in its revision, and approved the final version for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowan, M.P., Cancio, L.C., Elster, E.A. et al. Burn wound healing and treatment: review and advancements. Crit Care 19, 243 (2015). https://doi.org/10.1186/s13054-015-0961-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s13054-015-0961-2

Keywords

Navigation