From the literature [12], they considered Rockwood [13] types IV-VI (include some type III who was a laborer, elite athlete) dislocations to be high-grade dislocations and to require surgery. Surgical procedures focused on anatomic reconstruction of the coraco-clavicular ligaments. Biomechanical studies showed that double coraco-clavicular tunnel technique results in a significant higher stability than single coraco-clavicular tunnel technique [14]. We used optimal clavicular tunnel placements to install a double-bundle titanium cable reconstruct CC ligament (the trapezoid and conoid ligaments) in our study. As noted by Rios and colleagues, the distance from the lateral edge of the clavicle to the medial edge of the conoid tuberosity is approximately 45 mm in males and 40 mm in females, whereas the distance to the center of the trapezoid tuberosity is 25 mm in males and 22 mm in females [15]. We used a 1.3-mm-diameter titanium cable and a guide surrounding the coracoid to reduce and fix the acromioclavicular joint using double-bundle titanium cable fixation distances of approximately 4 cm and 2 cm from the distal end of the clavicle (the footprint of the CC ligament). This technique restores the anatomy and biomechanical properties of the native ligaments. Double-bundle titanium cable fixation increases the vertical and horizontal stability of the acromioclavicular joint, making the acromioclavicular joint in close contact with a certain amount of micromotion, consistent with the normal biomechanics of the acromioclavicular joint. The CC ligament fixation method with two small-width holes (2.5 mm) can predictably reduce the risk of fracture of the clavicle, and the coracoid process has no hole, so it has no risk of fracture. In addition, drilling small holes result in less damage to pre-existing torn CC ligaments.
We believe that an injury of less than 3 weeks is an acute injury. Therefore, this procedure is only applicable to patients who have undergone repair of acute acromioclavicular joint dislocation within 3 weeks after injury. Most experts agreed that the damaged coracoclavicular ligament can repair itself in an acute injury. The unique feature of our technique is the use of a titanium cable to reduce the acromioclavicular joint without coronoid process exposure, which avoids neurovascular damage around the coracoid and involves less damage to the torn coracoclavicular ligament than other techniques. The coracoclavicular ligament can be repaired with the normal CC interval distance consistently because of the double-bundle titanium cable implant. After a mean follow-up of 15 months, we did not record any tunnel fracture or implant failure. The patients revealed excellent radiological and clinical results, except one subluxation of the acromioclavicular joint. This one goes to work 2 weeks after operation. In contrast to the present study, reconstruction of the coracoclavicular ligament also includes an Endobutton system, adjustable-loop-length suspensory fixation, suture anchors, an artificial tendon, absorbable sutures, and autogenous tendon transplantation [16, 17]. Among them, the Endobutton system is the most widely used because it can provide a higher fixed strength. This technique involves single-bundle fixation with a swing effect of the clavicle. The single application cannot provide and maintain strength equivalent to that of the CC ligament, and the incidence of subluxation of the acromioclavicular joint is higher for Endobutton systems [18, 19]. Because of its swing effect, it may lead to delayed or non-healing of the CC ligament and enlarge the hole diameter, causing clavicular fracture.
Xue et al. [20] found that double Endobutton fixation provides comparable or even higher strength to the intact ligament because it needs to expose the coracoid process, exacerbating surrounding soft tissue damage, including possible neurological and vascular damage, causing shoulder discomfort, extending recovery time and the return to work time. Additionally, the suspension system provides sufficient vertical stability but does not control horizontal displacement.
Cai L et al. [4] found that compared with the single TightRope technique, arthroscopically assisted double TightRope fixation combined with percutaneous acromioclavicular joint cerclage significantly reduced the incidence of horizontal displacement. However, Tae Kang Lim [21] reported that the frequency of operative complications was very high in 61% (11/18) of CC ligament reconstructions with TightRope following arthroscopy. Martetschlager [22] et al. reported that there were 16 cases of complications among 59 cases of CC ligament reconstruction with TightRope under arthroscopy, including three cases of coracoid process and clavicle fracture. Some scholars compared TightRope technology with Kirschner wire, clavicular hook plate, and Bosworth screw technology and found that TightRope technology has similar clinical effects to the other three technologies and did not significantly improve shoulder function. On the other hand, the difficulty of the surgical technique limits its extensive development because of the steep learning curve. Compared with arthroscopic surgery, our method is minimally invasive, similar to arthroscopic surgery, without the steep learning curve of shoulder arthroscopy and equipment requirements. It can be widely carried out in every hospital.
Another major treatment for acute acromioclavicular joint dislocation is the clavicular hook plate, which is still widely used clinically. In the 1970s, clavicular hook plates were used to treat acromioclavicular joint dislocation. The surgical procedure is to first insert the hook end into the shoulder and lift the external scapula and then to fix the plate to the distal end of the clavicle to restore the acromioclavicular joint. Compared with Kirschner wire and Bosworth screw fixation, clavicular hook plate fixation allows the clavicle and scapula to move slightly, facilitating functional exercise early in the postoperative period. The operation is simple, the curative effect is reliable, and it is still the mainstream for treating acromioclavicular joint dislocation in primary hospitals [23, 24]. However, clavicular hook plate fixation easily causes subacromial impact, subacromial osteolysis, shoulder fracture, clavicular hook prolapses and bursitis, distal clavicle bone atrophy, and other complications and requires surgical removal of the plate. The shoulder joint will remain in a restricted state until the hardware is removed [25, 26].
This technique reduces and fixes the AC joint (anatomical reconstruction of the CC ligament) without the need to remove the implant. In all of our cases, a double-bundle titanium cable was used. After 15 months of follow-up, we did not find clavicle or coracoid process fracture or implant failure. Clinical outcomes revealed that all patients had good function except one patient who developed subluxations of the acromioclavicular joint. The advantages and limitations of the technique are provided (Table 3).
Table 3 Advantages and limitations of the technique In the future, we can use biological composite material instead of titanium cable to reconstruct coracoclavicular ligament, which is more in line with the biomechanics of coracoclavicular ligament [27].