Winter S, Koerbler M, Stein B, Pietruszka A, Paape M, Butgereitt A. Analysis of cassava brown streak viruses reveals the presence of distinct virus species causing cassava brown streak disease in East Africa. J Gen Virol. 2010;91:1365–72.
Article
PubMed
CAS
Google Scholar
Mbanzibwa DR, Tian YP, Tugume AK, Mukasa SB, Tairo F, Kyamanywa S, Kullaya A, Valkonen JPT. Genetically distinct strains of cassava brown streak virus in the Lake Victoria basin and the Indian Ocean coastal area of East Africa. Arch Virol. 2009;154:353–9.
Article
PubMed
CAS
Google Scholar
Hillocks R, Maruthi M, Kulembeka H, Jeremiah S, Alacho F, Masinde E, Ogendo J, Arama P, Mulwa R, Mkamilo G, Kimata B. Disparity between leaf and root symptoms and crop losses associated with cassava brown streak disease in four countries in eastern Africa. J Phytopathol. 2016;164:86–93.
Article
Google Scholar
Hillocks RJ, Jennings DL. Cassava brown streak disease: a review of present knowledge and research needs. Int J Pest Manag. 2003;49:225–34.
Article
Google Scholar
Patil BL, Legg JP, Kanju E, Fauquet CM. Cassava brown streak disease: a threat to food security in Africa. J Gen Virol. 2015;96:956–68.
Article
PubMed
CAS
Google Scholar
Monger WA, Alicai T, Ndunguru J, Kinyua ZM, Potts M, Reeder RH, Miano DW, Adams IP, Boonham N, Glover RH, Smith J. The complete genome sequence of the Tanzanian strain of cassava brown streak virus and comparison with the Ugandan strain sequence. Arch Virol. 2010;155:429–33.
Article
PubMed
CAS
Google Scholar
Sheat S, Butgereitt A, Bonse S, Winter S. Virus Indexing of Cassava–Developing Standardised Serological Methods for Field Diagnosis. In: Tielkes E, editor. Management of land use systems for enhanced food security: conflicts, controversies and resolutions. Germany: Tropentag 2015; 2015. p. 184.
Google Scholar
Abarshi MM, Mohammed IU, Wasswa P, Hillocks RJ, Holt J, Legg JP, Seal SE, Maruthi MN. Optimization of diagnostic RT-PCR protocols and sampling procedures for the reliable and cost-effective detection of cassava brown streak virus. J Virol Methods. 2010;163:353–9.
Article
PubMed
CAS
Google Scholar
Mbanzibwa DR, Tian YP, Tugume AK, Mukasa SB, Tairo F, Kyamanywa S, Kullaya A, Valkonen JPT. Simultaneous virus-specific detection of the two cassava brown streak-associated viruses by RT-PCR reveals wide distribution in East Africa, mixed infections, and infections in Manihot glaziovii. J Virol Methods. 2011;171:394–400.
Article
PubMed
CAS
Google Scholar
Monger WA, Seal S, Cotton S, Foster GD. Identification of different isolates of cassava brown streak virus and development of a diagnostic test. Plant Pathol. 2001;50:768–75.
Article
CAS
Google Scholar
Adams IP, Abidrabo P, Miano DW, Alicai T, Kinyua ZM, Clarke J, Macarthur R, Weekes R, Laurenson L, Hany U, Peters D, Potts M, Glover R, Boonham N, Smith J. High throughput real-time RT-PCR assays for specific detection of cassava brown streak disease causal viruses, and their application to testing of planting material. Plant Pathol. 2013;62:233–42.
Article
CAS
Google Scholar
Moreno I. GruissemW, Vanderschuren H. Reference genes for reliable potyvirus quantitation in cassava and analysis of cassava brown streak virus load in host varieties. J Virol Methods. 2011;177:49–54.
Article
PubMed
CAS
Google Scholar
Otti G, Bouvaine S, Kimata B, Mkamillo G, Kumar PL, Tomlins K, Maruthi MN. High-throughput multiplex real-time PCR assay for the simultaneous quantification of DNA and RNA viruses infecting cassava plants. J Appl Microbiol. 2016;120:1346–56.
Article
PubMed
CAS
Google Scholar
Shirima RR, Maeda DG, Kanju E, Ceasar G, Tibazarwa FI, Legg JP. Absolute quantification of cassava brown streak virus mRNA by real-time qPCR. J Virol Methods. 2017;245:5–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kaweesi T, Kawuki R, Kyaligonza V, Baguma Y, Tusiime G, Ferguson ME. Field evaluation of selected cassava genotypes for cassava brown streak disease based on symptom expression and virus load. Virol J. 2014;11:216.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ogwok E, Alicai T, Rey MEC, Beyene G, Taylor NJ. Distribution and accumulation of cassava brown streak viruses within infected cassava (Manihot esculenta) plants. Plant Pathol. 2014;64:1235–46.
Article
Google Scholar
Wang HW, Wang MXM, Su N, Wang LC, Wu X, Bui S, Nielsen A, Vo HT, Nguyen N, Luo Y, Ma XJ. RNAscope for in situ detection of transcriptionally active human papillomavirus in head and neck squamous cell carcinoma. J Vis Exp. 2014;85:e51426.
Google Scholar
Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, Wu XY, Vo HT, Ma XJ, Luo YL. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14:22–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brostoff T, Dela Cruz FN, Church ME, Woolard KD, Pesavento PA. The raccoon polyomavirus genome and tumor antigen transcription are stable and abundant in neuroglial tumors. J Virol. 2014;88:12816–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carter JM, Caron BL, Dogan A, Folpe AL. A novel chromogenic in situ hybridization assay for FGF23 mRNA in phosphaturic mesenchymal tumors. Am J Surg Pathol. 2015;39:75–83.
Article
PubMed
Google Scholar
Carossino M, Loynachan AT, MacLachlan NJ, Drew C, Shuck KM, Timoney PJ, Del Piero F, Balasuriya UB. Detection of equine arteritis virus by two chromogenic RNA in situ hybridization assays (conventional and RNAscope(a (R))) and assessment of their performance in tissues from aborted equine fetuses. Arch Virol. 2016;161:3125–36.
Article
PubMed
CAS
Google Scholar
Patel K, Liu TC, Vaccharajani N, Chapman WC, Brunt EM. Characterization of inflammatory (lymphoepithelioma-like) hepatocellular carcinoma: a study of 8 cases. Arch Pathol Lab Med. 2014;138:1193–202.
Article
PubMed
Google Scholar
Bowling AJ, Pence HE, Church JB. Application of a novel and automated branched DNA in situ hybridization method for the rapid and sensitive localization of mRNA molecules in plant tissues. Appl Plant Sci. 2014;2:1400011.
Article
Google Scholar
Bergua M, Phelan DM, Bak A, Bloom DC, Folimonova SY. Simultaneous visualization of two Citrus tristeza virus genotypes provides new insights into the structure of multi-component virus populations in a host. Virology. 2016;491:10–9.
Article
PubMed
CAS
Google Scholar
Bishop R. Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical significance. Biosci Horizons. 2010;3:85–95.
Article
CAS
Google Scholar
Hsi BL, Xiao S, Fletcher JA. Chromogenic in situ hybridization and FISH in pathology. In: Walker JM, editor. Molecular Cytogenetics, Protocols and Applications, Methods in Molecular Biology, vol. 204. Humana Press; 2002. p. 343–351.
Kliot A, Ghanim M. Fluorescent in situ hybridization for the localization of viruses, bacteria and other microorganisms in insect and plant tissues. Methods. 2016;98:74–81.
Article
PubMed
CAS
Google Scholar
Ghanim M, Brumin M, Popovski S. A simple, rapid and inexpensive method for localization of tomato yellow leaf curl virus and potato leafroll virus in plant and insect vectors. J Virol Methods. 2009;159:311–4.
Article
PubMed
CAS
Google Scholar
Cillo F, Roberts IM, Palukaitis P. In situ localization and tissue distribution of the replication-associated proteins of cucumber mosaic virus in tobacco and cucumber. J Virol. 2002;76:10654–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gao RM, Liu P, Wong SM. Identification of a plant viral RNA genome in the nucleus. PLoS One. 2012;7:e48736.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gambino G, Vallania R, Gribaudo I. In situ localization of grapevine fanleaf virus and phloem-restricted viruses in embryogenic callus of Vitis vinifera. European J Plant Pathol. 2010;127:557–70.
Article
Google Scholar
Horns T, Jeske H. Localization of Abutilon mosaic-virus (Abmv) DNA within leaf tissue by in situ hybridization. Virology. 1991;181:580–8.
Article
PubMed
CAS
Google Scholar
Kong LJ, Orozco BM, Roe JL, Nagar S, Ou S, Feiler HS, Durfee T, Miller AB, Gruissem W, Robertson D, Hanley-Bowdoin L. A geminivirus replication protein interacts with the retinoblastoma protein through a novel domain to determine symptoms and tissue specificity of infection in plants. EMBO J. 2000;19:3485–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Latham JR, Saunders K, Pinner M, Stanley J. Induction of plant cell division by beet curly top virus gene C4. Plant J. 1997;11:1273–83.
Article
CAS
Google Scholar
Lucy AP, Boulton MI, Davies JW, Maule AJ. Tissue specificity of Zea mays infection by maize streak virus. Mol Plant-Microbe Interact. 1996;9:22–31.
Article
CAS
Google Scholar
Mochizuki T, Ohki ST. Detection of plant virus in meristem by immunohistochemistry and in situ hybridization. In: Uyeda I, Masuta C, editors. Plant virology protocols, methods in molecular biology, vol. 1236. New York, NY: Humana Press; 2015. p. 275–87.
Google Scholar
Shargil D, Zemach H, Belausov E, Lachman O, Kamenetsky R. Development of a fluorescent in situ hybridization (FISH) technique for visualizing CGMMV in plant tissues. J Virol Methods. 2015;223:55–60.
Article
PubMed
CAS
Google Scholar
Wege C, Saunders K, Stanley J, Jeske H. Comparative analysis of tissue tropism of bipartite geminiviruses. J Phytopathol. 2001;149:359–68.
Article
Google Scholar
Rothenstein D, Krenz B, Selchow O, Jeske H. Tissue and cell tropism of Indian cassava mosaic virus (ICMV) and its AV2 (precoat) gene product. Virology. 2007;359:137–45.
Article
PubMed
CAS
Google Scholar
Maidji E, Somsouk M, Rivera JM, Hunt PW, Stoddart CA. Replication of CMV in the gut of HIV-infected individuals and epithelial barrier dysfunction. PLoS Pathog. 2017;13:e1006202.
Article
PubMed
PubMed Central
CAS
Google Scholar
Turkekul M, Barlas A, Yarilin D, Fujisawa S, Fan N, Brendel M, Manova-Todorova K. Automated double in situ detection of mouse Lgr5 mRNA and lysozyme protein in examining the neighboring cell types of the mouse intestinal crypt. Methods Mol Biol. 2017;1554:263–72.
Article
PubMed
CAS
Google Scholar
Grabinski TM, Kneynsberg A, Manfredsson FP, Kanaan NM. A method for combining RNAscope in situ hybridization with immunohistochemistry in thick free-floating brain sections and primary neuronal cultures. PLoS One. 2015;10:e0120120.
Article
PubMed
PubMed Central
CAS
Google Scholar