Knowledge production
Publications
In total, 1257 peer-reviewed publications were generated by BCP recipients over the 3-year period, yielding an average of 11.3 per grant awarded. The impact factor for the journals in which BCP researchers published most frequently increased annually, from 3.84 in 2011 to 6.74 in 2013, indicating that, over time, work is being published in higher impact journals. The overall impact factor for the journals in which BCP recipients most commonly published in over the period was 6.40. Table 1 presents the 20 peer-reviewed journals most commonly published in for the study duration. Table 2 outlines the most commonly cited article for the three funding categories (biomedical, clinical and population health/services).
Table 1 Top 20 peer-reviewed journals most commonly published in for 2011–2013 Table 2 Most commonly cited article for the three funding categories Dissemination
BCP recipients disseminated knowledge produced outside of peer-reviewed publications. Aside from publication, the most popular methods of dissemination were oral presentations, posters, conferences and workshops for academics (n = 590), overall representing 6.4 presentations/posters per survey grant respondent. This was followed by general public presentations (n = 75; 0.82 per grant), newspaper articles (n = 36; 0.39 per grant), radio interviews (n = 29; 0.32 per grant) and television interviews (n = 19; 0.21) per grant.
Benefits to future research and research use
Research training and career development
Funded researchers reported that 110 higher degrees (1.2 per grant) were awarded or expected in the next 5 years, including 84 PhDs as a direct consequence of BCP funding. In addition, 21 (22.8%) reported that participation in the research led to career advancement for members of the funded research team (e.g. an advancement from Senior Lecturer to Professor).
Capacity-building
BCP recipients reported that 48 funded projects (52.2%) had generated tools (including improved websites, questionnaires and registries to procedures, methods and markers for early detection) for future research as a result of the funded research that would help to build capacity across the research system.
Attracting further income and generating further research
Further income
The BCP’s investment of AUD $10.4 m during the study period yielded further funding to the amount of AUD $26.3 m (AUD $12.5 m in matched funding from universities and an additional AUD $13.8 m in further research funding from other sources, e.g. NHMRC). Thus, for every AUD $1 invested by the BCP ($0.50 by SA Health and $0.50 by Cancer Council SA), research teams gained an additional $2.53. Or in other funding leverage terms, for the AUD $5.2 m invested by Cancer Council SA, a further AUD $31.5 m was achieved in funding from other sources (SA Health, Universities, NHMRC, etc.), meaning that, for every Australian dollar invested by Cancer Council SA on behalf of their donors, the BCP gained an additional AUD $6.06.
Further research
Overall, 38 (41.3%) of BCP investigators reported that their funded research findings, methodology or theoretical developments generated subsequent research. In addition, 16 investigators reported that their research contributed to research conducted by others.
Benefits from informing policy and product development
Policy development
Impact into policy and practice had already occurred in some instances, despite the short 3-year time frame, but was most frequently intended for the future. The survey found that five BCP recipients reported that their results had been used in policy and decision-making and a further 31 (34%) reported that they plan to do so in the future, but that the timeframe since BCP funding has been insufficient to have done so yet. Actual use ranged from impact on refined treatment guidelines for colorectal cancer, high-risk patients, liver transplant and liver resection patients, the management of women with early breast cancer (including stratification of women according to their risk of subsequent breast cancer), physical activity for cancer survivors, to promoting case conferencing for palliative care, increasing expenditure on anti-smoking mass media, and informing position statements for the non-government sector. Expected use ranged from use in state and national policy in tobacco control and obesity, to guidance on improvements for the health of Aboriginal and Torres Strait Islander communities, and clinical management of women with screen-detected breast lesions. Population health/health services researchers listed 35 ways of expected/actual use, whereas biomedical researchers listed 20 and clinical researchers listed 19. There were differences in the levels at which policies were, or were likely to be, influenced by research type (Fig. 1). The impact (or intended impact) of population and health services research was most often in government policies and hospital/local practice and policy. Biomedical research was reported as being most likely to impact clinical guidelines and healthcare bodies in other countries. Clinical research was reported to be most likely to impact clinical guidelines, and curriculum or training.
In total, 58% of projects reported that they had interaction with end-users of their research, namely policy-makers, practitioners and/or consumers, either before (39.1%), during (43.5%) or after project completion (34.8%). Further analysis revealed that a higher proportion of population/health services (71%) and clinical researchers (67%) had engagement than biomedical researchers (54%).
Product development
Five (5%) BCP recipients reported that they had used their results to inform product development (including pharmaceuticals, diagnostic tests, medical devices, etc.) and a further 35 (38%) expected their research to do so in the future.
Health gains and broader economic benefits
Survey results found that 8 (9%) BCP recipients reported influencing practice or behaviour of health service staff, patients and the public, and a further 32 (35%) reported that their projects would do so in the future. Actual and expected benefits ranged from decreasing the side-effects of cancer treatments to prevention and early detection. The majority of participants reported that they had increased, or expected to do so, the length or quality of life for people with cancer (57%). There were differences in the levels at which policies were, or were likely to be, influenced by research type (Fig. 2).