The Active Early program was part of a larger statewide program, funded through the Center for Disease Control and Prevention’s Communities Putting Prevention to Work (CPPW), that focused exclusively on increasing physical activity in the ECE setting. The general purposes of the CPPW grants were to identify health problems and improve services and benefits exclusively for those communities participating in the grant. The Wisconsin Department of Health Services’ Nutrition, Physical Activity, and Obesity Program (NPAO) was awarded the CPPW grant. The project design, guide, trainings to support the guide, and evaluation were developed from partners of the statewide coalition, the Wisconsin Early Childhood Obesity Prevention Initiative (WECOPI). WECOPI partners include NPAO, Supporting Families Together Association, Wisconsin Child Care Resource and Referral Agencies, Wisconsin Early Childhood Association, University of Wisconsin-Madison Department of Family Medicine, Wisconsin Council of Children and Families, Wisconsin Department of Children and Families, Wisconsin Department of Public Instruction, and other key stakeholders.
Active early guide development
Prior to developing the Active Early guide, WECOPI members conducted formative assessments of the Wisconsin ECE setting, including an extensive literature review, ECE provider focus groups, parent focus groups, and key informant interviews with relevant local, state, and regional organizations. Key themes that emerged from these data sources were a lack of understanding of physical activity requirements and inadequate training and resources to achieve physical activity recommendations. Results from these local data were used to develop an 80-page guide (Active Early: A Wisconsin guide for improving childhood physical activity [19], available in English and Spanish) that provided user-friendly tools and ideas while incorporating current science, public health research, and national recommendations. The guide provides an overview and addresses current research, public health practice, and national recommendations around 6 key areas related to physical activity: Development, Child Assessment, Routines, Environment, Resources, and Business Practices. Table 1 provides a summary of the content within each of the six key areas of the Active Early guide. Sample daily routines, activity ideas, equipment, and materials were included to promote the increased structured physical activity. The Guide also included examples of addressing cultural competence and inclusive approaches within each key areas. For example, providers are encouraged to understand daily home routines, such as meal times and family activities, as this reflects family values and priorities. Additionally, providers may need to modify activities and routines to accommodate children with physical disabilities or developmental delays. Beyond the center-focused guidance, each area includes information on engaging both families and communities around increasing physical activity. Throughout the guide’s development, revisions were made based ECE provider feedback.
Table 1 Key components in active early: a Wisconsin guide for improving childhood physical activity
Site selection
Twenty regulated Wisconsin programs that served children aged 2–5 years old, had been in business for at least 3 years, and participated in the Child and Adult Care Food Program were selected by project partners to participate in the evaluation of Active Early. In total, 7 family providers, 7 small group centers (i.e., licensing capacity of ≤50), and 6 large group centers (i.e., licensing capacity ≥51) were included.
Intervention
Participating child care centers received the Active Early intervention over 12 months. Participating sites received an initial 4-h training (Wisconsin Early Care and Education Physical Activity Training) that aligned with the Active Early guide. Delivery of the training utilized the existing structure of ECE training and technical assistance provided by three Wisconsin organizations (The Wisconsin Early Childhood Association, the Wisconsin Council on Children and Families, and Supporting Families Together Association). The objectives of this training were to provide background information regarding obesity prevention through physical activity programming and to demonstrate how to utilize the Active Early guide. One hundred and thirty-four ECE providers from the 20 intervention sites attended the 4-h in-person training. After the initial 4-h training, an additional 1-h follow-up in-person session was provided. Additionally, participating centers were provided with on-going unlimited technical assistance from trained consultants around the Active Early guide throughout the intervention upon their request. Technical assistance was provided in the modes of onsite, phone, and email assistance. Project-related training and technical assistance were designed to operate within existing infrastructure for these types of activities. In addition, each site received a micro-grant at the beginning of the intervention designed to facilitate sustainable investments in physical activity and related behaviors ($2,500 for family providers, $5,000 for small group centers, $7,500 for large group centers). The Active Early intervention was reviewed by the University of Wisconsin-Madison’s Institutional Review Board and was granted exemption from full review because they considered this project to be evaluation of a public service program. All staff participated in the deidentified evaluation unless verbally declining and all children participated in deidentified evaluation activities unless their caregivers submitted an opt out form.
Data collection
Main outcome measures included site physical activity environment, child physical activity levels, and structured activity, (i.e. teacher-led activity). Except where noted, outcome data were collected at baseline, 6 months (midpoint), and 12 months (final) of the intervention by trained researchers:
Physical activity self-assessment (baseline only)
Each site completed a modified version of the Nutrition and Physical Activity Self-Assessment for Child Care (NAP SACC) [20] instrument which included evaluation around the following areas: active/inactive play time, play environment, physical activity, and physical activity policy. Results were used to direct each site in developing an action plan to achieve the intervention goals.
Site demographics (baseline only)
Information on the site, staff, child demographics, parent engagement, perceived barriers to implementing physical activity recommendations, and training needs were collected from the director of each center by the project assistant during phone or in-person interviews or via questionnaire.
Physical activity observations
Child care physical activity environment and policies were assessed using the Environment and Policy Assessment and Observation (EPAO) instrument, which involves a day-long observation, by trained staff, of the nutrition and physical activity environment of the child care program as well as a document review of program policies, activities, and food served (e.g. menu, parent handbook). Day-long observations started when then majority of children congregated in the morning until they were picked up by their guardians at the end of the day (typically an eight- to ten- hour day). Total physical activity environment was calculated from the EPAO using eight constructs, or subscales, that identify key physical activity indicators [20, 21]: Active Opportunities (e.g. total time active play was observed), Sedentary Opportunities (e.g. total minutes of seated activity observed), Portable Play Equipment (e.g. presence of play equipment), Fixed Play Equipment (e.g. equipment and space that is fixed within center area), Sedentary Environment (e.g. items that promote or discourage physical activity behavior), Staff Behaviors (e.g. interactions between staff and children that may promote or restrict active play), Physical Activity Training and Education (e.g. training and education for children, staff and parents), and Physical Activity Policy (e.g. general strength and content of physical activity policies). The eight subscales consisted of 75-item responses that observers rated and converted to a 3-point scale (0, 1 and 2). Scores were averaged within each subscale, and multiplied by 10, for a range of 0 to 20 (higher scores reflecting a more supportive environments). The total physical activity score represents the average of all subscale scores, again, ranging from 0 to 20 with higher scores reflecting more supportive environments. Detailed scoring of the EPAO has been previously published [21]. In addition to the EPAO protocol being administered at each observation, staff recorded the number of structured (i.e. teacher-led) physical activity occasions to quantify minutes of teacher-led physical activity. For larger group centers that had age-specific classrooms, the 3-year old classroom was chosen for observation to increase the number of children who would still be enrolled at the 12-month observation point, where they were observed in the 4-year old classroom.
Child physical activity
Child physical activity (PA) was measured using Actical triaxial accelerometers (Bio-Lynx, Montreal, Quebec, Canada). Accelerometers were attached to an adjustable belt worn by the children on the hip for an entire observation day (mean ± SD minutes worn at baseline was 420.9 ± 114.6 min). The accelerometers provided activity counts for each 15-s interval. Data were uploaded into the Actical 2.0 program for analysis. Data were reduced to quantify activity into counts/minute intervals and further to quantify the number of intervals for sedentary, light, and combined moderate plus vigorous physical activity (MVPA) per hour. Previous research has established accelerometer activity count thresholds for physical activity intensity categories. Puyau et al. [22] had children wearing Actical accelerometers perform preset activities while in a respiratory room calorimeter to determine cutoffs for sedentary (<100 cpm), light (≥100 < 1500 cpm), MVPA (≥1500 cpm). Although activity levels for children lack defined categories [23, 24], we chose these cutoffs because they represent typical physical activity behaviors for this age group of children. We used these cut points to calculate the percent time the children in our study spent wearing the accelerometers in each intensity category. We chose to analyze the data primarily in ‘percent time’ over total minutes because the total amount of time spent in child care varied per child. We then back-calculated total minutes from percent time for better interpretation of the data.
Statistical analysis
Analyses with quantitative measures were performed with SAS software version 9.2 (SAS Inc., Cary, NC). Outcome variables related to the childcare physical activity environment and policies, structured activity (i.e. teacher-led activity), and child physical activity levels were compared before and after the 12-month intervention. To assess whether differences existed between sites that had high better supportive physical activity environments at baseline compared to low supportive environment centers, analyses were further stratified by PA-EPAO scores at baseline above and below the median score (score of 11.2). The median was used because of the small sample size and because established cut-points for high and low PA-EPAO have not been established. Results were not significantly different among group versus family sites; therefore, these data will not be reported. Differences in outcome measures used various statistical tests as appropriate, including mean differences t-tests, matched pairs t- tests, Pearson correlations, general linear models (PROC GLM) with fixed and random effects, and Tukey’s test of multiple comparisons. An alpha level of 0.5 was set for all significance testing.