Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338(6103):68–72.
CAS
Article
Google Scholar
Machado-Vieira R, Salvadore G, Diazgranados N, Zarate CA. Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther. 2009;123(2):143–50.
CAS
Article
Google Scholar
Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–4.
CAS
Article
Google Scholar
Wang XB, Chen YL, Zhou X, Liu F, Zhang T, Zhang C. Effects of propofol and ketamine as the combined anesthesia for electroconvulsive therapy in patients with depressive disorder. J ECT. 2012;28(2):128–32.
Article
Google Scholar
Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol. 2008;32(1):140–4.
CAS
Article
Google Scholar
Sun HL, Zhou ZQ, Zhang GF, Yang C, Wang XM, Shen JC, et al. Role of hippocampal p11 in the sustained antidepressant effect of ketamine in the chronic unpredictable mild stress model. Transl Psychiatry. 2016;6:e741.
CAS
Article
Google Scholar
Yang JJ, Wang N, Yang C, Shi JY, Yu HY, Hashimoto K. Serum interleukin-6 is a predictive biomarker for ketamine’s antidepressant effect in treatment-resistant patients with major depression. Biol Psychiatry. 2015;77(3):e19–20.
CAS
Article
Google Scholar
Murrough JW, Iosifescu DV, Chang LC, Jurdi RK, Green CE, Perez AM, et al. Antidepressant efficacy of ketamine in treatment resistant major depression: a two-site randomized controlledtrial. Am J Psychiatry. 2013;170(10):1134–42.
Article
Google Scholar
Yang X, Yang Q, Wang X, Luo C, Wan Y, Li J, et al. MicroRNA expression profile and functional analysis reveal that miR-206 is a critical novel gene for the expression of BDNF induced by ketamine. NeuroMolecular Med. 2014;16(3):594–605.
CAS
Article
Google Scholar
Van Rossum D, Verheijen BM, Pasterkamp RJ. Circular RNAs: novel regulators of neuronal development. Front Mol Neurosci. 2016;9:74.
PubMed
PubMed Central
Google Scholar
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52.
CAS
Article
Google Scholar
Wang MZ, Su PX, Liu Y, Zhang XT, Yan J, An XG, et al. Abnormal expression of circRNA_089763 in the plasma exosomes of patients with post operative cognitive dysfunction after coronary artery bypass grafting. Mol Med Rep. 2019;20:2549–62.
CAS
PubMed
PubMed Central
Google Scholar
Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ, et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study. PLoS Med. 2010;10(11):e1001547.
Article
Google Scholar
Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology. 1999;20(2):106–18.
CAS
Article
Google Scholar
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57.
CAS
Article
Google Scholar
Malki K, Tosto MG, Jumabhoy I, Lourdusamy A, Sluyter F, Craig I, et al. Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder. Pharmacogenomics. 2013;14(16):1979–90.
CAS
Article
Google Scholar
Kim J, Lee S, Kang S, Jeon TI, Kang MJ, Lee TH, et al. Regulator of G-protein signaling 4 (RGS4) controls morphine reward by glutamate receptor activation in the nucleus Accumbens of mouse brain. Mol Cells. 2018;41(5):454–64.
CAS
PubMed
PubMed Central
Google Scholar
Zeng D, He S, Yu S, Li G, Ma C, Wen Y, et al. Analysis of the association of MIR124-1 and its target gene RGS4 polymorphisms with major depressive disorder and antidepressant response. Neuropsychiatr Dis Treat. 2018;14:715–23.
CAS
Article
Google Scholar
Stratinaki M, Varidaki A, Mitsi V, Ghose S, Magida J, Dias C, et al. Regulator of G protein signaling 4 [corrected] is a crucial modulator of antidepressant drug action in depression and neuropathic pain models. Proc Natl Acad Sci U S A. 2013;110(20):8254–9.
CAS
Article
Google Scholar
Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry. 2001;6(3):293–301.
CAS
Article
Google Scholar
Nätt D, Johansson I, Faresjö T, Ludvigsson J, Thorsell A. High cortisol in 5-year-old children causes loss of DNA methylation in SINE retrotransposons: a possible role for ZNF263 in stress-related diseases. Clin Epigenetics. 2015;7:91.
Article
Google Scholar
Grados MA, Specht MW, Sung HM, Fortune D. Glutamate drugs and pharmacogenetics of OCD: a pathway-based exploratory approach. Expert Opin Drug Discov. 2013;8(12):1515–27.
CAS
Article
Google Scholar
Douglas LN, McGuire AB, Manzardo AM, Butler MG. High-resolution chromosome ideogram representation of recognized genes for bipolar disorder. Gene. 2016;586(1):136–47.
CAS
Article
Google Scholar
Gao L, Gao Y, Xu E, Xie J. Microarray analysis of the major depressive disorder mRNA profile data. Psychiatry Investig. 2015;12(3):388–96.
CAS
Article
Google Scholar
Benoist M, Palenzuela R, Rozas C, Rojas P, Tortosa E, Morales B, et al. MAP 1B- dependent Rac activation is required for AMPA receptor endocytosis during long-term depression. EMBO J. 2013;32(16):2287–99.
CAS
Article
Google Scholar
Ni X, Liao Y, Li L, Zhang X, Wu Z. Therapeutic role of long non-coding RNA TCONS_00019174 in depressive disorders is dependent on Wnt/β-catenin signaling pathway. J Integr Neurosci. 2018;17(2):203–15.
Article
Google Scholar
Martin PM, Stanley RE, Ross AP, Freitas AE, Moyer CE, Brumback AC, et al. DIXDC1 contributes to psychiatric susceptibility by regulating dendritic spine and glutamatergic synapse density via GSK3 and Wnt/β-catenin signaling. Mol Psychiatry. 2018;23(2):467–75.
CAS
Article
Google Scholar
Zhou WJ, Xu N, Kong L, Sun SC, Xu XF, Jia MZ, et al. The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors. Transl Psychiatry. 2016;6(9):e892.
CAS
Article
Google Scholar
Cunha MP, Budni J, Ludka FK, Pazini FL, Rosa JM, Oliveira Á, Lopes MW, et al. Involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of Creatine. Mol Neurobiol. 2016;53(5):2954–68.
CAS
Article
Google Scholar
Shi HS, Zhu WL, Liu JF, Luo YX, Si JJ, Wang SJ, et al. PI3K/Akt signaling pathway in the basolateral amygdala mediates the rapid antidepressant-like effects of trefoil factor 3. Neuropsychopharmacology. 2012;37(12):2671–83.
CAS
Article
Google Scholar
Lima IVA, Almeida-Santos AF, Ferreira-Vieira TH, Aguiar DC, Ribeiro FM, Campos AC, et al. Antidepressant-like effect of valproic acid-possible involvement of PI3K/Akt/mTOR pathway. Behav Brain Res. 2017;329:166–71.
CAS
Article
Google Scholar
Pazini FL, Cunha MP, Rosa JM, Colla AR, Lieberknecht V, et al. Creatine, similar to ketamine, counteracts depressive-like behavior induced by Corticosterone via PI3K/Akt/mTOR pathway. Mol Neurobiol. 2016;53(10):6818–34.
CAS
Article
Google Scholar
Zhou W, Dong L, Wang N, Shi JY, Yang JJ, Zuo ZY, et al. Akt mediates GSK-3β phosphorylation in the rat prefrontal cortex during the process of ketamine exerting rapid antidepressant actions. Neuroimmunomodulation. 2014;21(4):183–8.
CAS
Article
Google Scholar