Byun J, Han Y, Gorlov IP, Busam JA, Seldin MF, Amos CI. Ancestry inference using principal component analysis and spatial analysis: a distance-based analysis to account for population substructure. BMC Genomics. 2017;18(789):1–12. https://doi.org/10.1186/s12864-017-4166-8.
Article
Google Scholar
Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27(5):1451–4. https://doi.org/10.1038/s41418-020-0530-3.
CAS
Article
PubMed
PubMed Central
Google Scholar
Belmont JW, et al. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320. https://doi.org/10.1038/nature04226.
CAS
Article
Google Scholar
Visscher PM, et al. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7–24. https://doi.org/10.1016/j.ajhg.2011.11.029.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ikegawa S. A short history of the genome-wide association study: where we were and where we are going. Genomics Informatics. 2012;10(4):220. https://doi.org/10.5808/gi.2012.10.4.220.
Article
PubMed
PubMed Central
Google Scholar
Palmer C, Pe’er I. Statistical correction of the Winner’s curse explains replication variability in quantitative trait genome-wide association studies. PLoS Genet. 2017;13(7):e1006916. https://doi.org/10.1371/journal.pgen.1006916.
CAS
Article
PubMed
PubMed Central
Google Scholar
Somiari SB, Somiari RI. The future of biobanking: a conceptual look at how biobanks can respond to the growing human biospecimen needs of researchers. Adv Exp Med Biol. 2015:11–27. https://doi.org/10.1007/978-3-319-20579-3_2.
Kaiser J. Population databases boom, from Iceland to the U.S. Science. 2002;298(5596):1158–61. https://doi.org/10.1126/science.298.5596.1158.
CAS
Article
PubMed
Google Scholar
Padmanabhan S, Dominiczak AF. Genomics of hypertension: the road to precision medicine. Nat Rev Cardiol. 2020;18(4):235–50. https://doi.org/10.1038/s41569-020-00466-4.
CAS
Article
PubMed
Google Scholar
NIH RePORT. Estimates of Funding for Various Research, Condition, and Disease Categories (RCDC); 2021. https://report.nih.gov/funding/categorical-spending#/. (Last Accessed 14 Feb 2021).
Al-jawahiri R, Milne E. Resources available for autism research in the big data era: a systematic review. PeerJ. 2017;10(7717):e2880. https://doi.org/10.7717/peerj.2880.
Article
Google Scholar
Thapar A, Rutter M. Genetic advances in autism. J Autism Dev Disord. 2020. https://doi.org/10.1007/s10803-020-04685-z.
Smith BH, Campbell H, Blackwood D, Connell J, Connor M, Deary IJ, et al. Generation Scotland: the Scottish family health study; a new resource for researching genes and heritability. BMC Med Genet. 2006;7(1). https://doi.org/10.1186/1471-2350-7-74.
Generation Scotland. Generation Scotland : Facts and Figures; 2016.
Google Scholar
Caulfield M, et al. The 100,000 genomes project protocol. Genomics England. 2017. https://doi.org/10.6084/M9.FIGSHARE.4530893.V2.
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. https://doi.org/10.1371/journal.pmed.1001779.
Article
PubMed
PubMed Central
Google Scholar
Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9. https://doi.org/10.1038/s41586-018-0579-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Oleksyk TK, Brukhin V, O’Brien SJ. The genome Russia project: closing the largest remaining omission on the world genome map. GigaScience. 2015;4(1):53. https://doi.org/10.1186/s13742-015-0095-0.
CAS
Article
PubMed
PubMed Central
Google Scholar
J. Kaiser, Cash-Starved deCODE Is Looking For a Rescuer for Its Biobank. Science. 2009;325(5944):1054.
Dubow T, Marjanovic S. Population-scale sequencing and the future of genomic medicine: learning from past and present efforts; 2016. https://doi.org/10.7249/rr1520.
Book
Google Scholar
Scudellari M. Biobank managers bemoan underuse of collected samples. Nat Med. 2013;19(3):253. https://doi.org/10.1038/nm0313-253a.
CAS
Article
PubMed
Google Scholar
Border R, Johnson EC, Evans LM, Smolen A, Berley N, Sullivan PF, et al. No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples. Am J Psychiatr. 2019;176(5):376–87. https://doi.org/10.1176/appi.ajp.2018.18070881.
Article
PubMed
Google Scholar
Lawson DJ, Davies NM, Haworth S, Ashraf B, Howe L, Crawford A, et al. Is population structure in the genetic biobank era irrelevant, a challenge, or an opportunity? Hum Genet. 2020;139(1):23–41. https://doi.org/10.1007/s00439-019-02014-8.
Article
PubMed
Google Scholar
Li Z, Xiang Y, Chen J, Li Q, Shen J, Liu Y, et al. Loci with genome-wide associations with schizophrenia in the Han Chinese population. Br J Psychiatry. 2015;207(6):490–4. https://doi.org/10.1192/bjp.bp.114.150490.
CAS
Article
PubMed
Google Scholar
Wain LV. Blood pressure genetics and hypertension: genome-wide analysis and role of ancestry. Curr Genet Med Rep. 2014;2(1):13–22. https://doi.org/10.1007/s40142-014-0032-z.
Article
Google Scholar
Nalls MA, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46(9):989–93. https://doi.org/10.1038/ng.3043.
CAS
Article
PubMed
Google Scholar
Chalmers D, Nicol D, Kaye J, Bell J, Campbell AV, Ho CWL, et al. Has the biobank bubble burst? Withstanding the challenges for sustainable biobanking in the digital era Donna Dickenson, Sandra Soo-Jin lee, and Michael Morrison. BMC Medl Ethics. 2016;17(1):39. https://doi.org/10.1186/s12910-016-0124-2.
Article
Google Scholar
McClellan J, King MC. Genetic heterogeneity in human disease. Cell. 2010;141(2):210–7. https://doi.org/10.1016/j.cell.2010.03.031.
CAS
Article
PubMed
Google Scholar
Nunes K, Aguiar VRC, Silva M, Sena AC, de Oliveira DCM, Dinardo CL, et al. How ancestry influences the chances of finding unrelated donors: an investigation in admixed Brazilians. Front Immunol. 2020;11:584950. https://doi.org/10.3389/fimmu.2020.584950.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yusuf S, Wittes J. Interpreting geographic variations in results of randomized, controlled trials. N Engl J Med. 2016;375(23):2263–71. https://doi.org/10.1056/nejmra1510065.
Article
PubMed
Google Scholar
Elhaik E. Empirical distributions of FST from large-scale human polymorphism data. PLoS One. 2012;7(11):e49837. https://doi.org/10.1371/journal.pone.0049837.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kamm J, Terhorst J, Durbin R, Song YS. Efficiently inferring the demographic history of many populations with allele count data. J Am Stat Assoc. 2019;115(531):1–16. https://doi.org/10.1080/01621459.2019.1635482.
CAS
Article
Google Scholar
Das R, Wexler P, Pirooznia M, Elhaik E. Localizing Ashkenazic Jews to primeval villages in the ancient Iranian lands of Ashkenaz. Genome Biol Evol. 2016;8(4):1132–49. https://doi.org/10.1093/gbe/evw046.
CAS
Article
PubMed
PubMed Central
Google Scholar
Marshall S, Das R, Pirooznia M, Elhaik E. Reconstructing Druze population history. Sci Rep. 2016;6(1). https://doi.org/10.1038/srep35837.
Ramachandran S, Deshpande O, Roseman CC, Rosenberg NA, Feldman MW, Cavalli-Sforza LL. Support from the relationship of genetic and geographic in human populations for a serial founder effect originating in Africa. Proc Natl Acad Sci U S A. 2005;102(44):15942–7. https://doi.org/10.1073/pnas.0507611102.
CAS
Article
PubMed
PubMed Central
Google Scholar
Elhaik E, et al. Geographic population structure analysis of worldwide human populations infers their biogeographical origins. Nat Commun. 2014;5(1):3513. https://doi.org/10.1038/ncomms4513.
CAS
Article
PubMed
Google Scholar
Jakobsson M, Scholz SW, Scheet P, Gibbs JR, VanLiere JM, Fung HC, et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature. 2008;451(7181):998–1003. https://doi.org/10.1038/nature06742.
CAS
Article
PubMed
Google Scholar
Li Q, Yu K. Improved correction for population stratification in genome-wide association studies by identifying hidden population structures. Genet Epidemiol. 2008;32(3):215–26. https://doi.org/10.1002/gepi.20296.
CAS
Article
PubMed
Google Scholar
Mountain JL, Risch N. Assessing genetic contributions to phenotypic differences among “racial” and “ethnic” groups. Nat Genet. 2004;36(S11):S48–53. https://doi.org/10.1038/ng1456.
CAS
Article
PubMed
Google Scholar
Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, et al. Genetic structure of human populations. Science. 2002;298(5602):2381–5. https://doi.org/10.1126/science.1078311.
CAS
Article
PubMed
Google Scholar
Xing J, Watkins WS, Witherspoon DJ, Zhang Y, Guthery SL, Thara R, et al. Fine-scaled human genetic structure revealed by SNP microarrays. Genome Res. 2009;19(5):815–25. https://doi.org/10.1101/gr.085589.108.
CAS
Article
PubMed
PubMed Central
Google Scholar
Altshuler DM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. https://doi.org/10.1038/nature11632.
CAS
Article
Google Scholar
Sirugo G, Williams SM, Tishkoff SA. The missing diversity in human genetic studies. Cell. 2019;177(1):26–31. https://doi.org/10.1016/j.cell.2019.02.048.
CAS
Article
PubMed
PubMed Central
Google Scholar
Need AC, Goldstein DB. Next generation disparities in human genomics: concerns and remedies. Trends Genet. 2009;25(11):489–94. https://doi.org/10.1016/j.tig.2009.09.012.
CAS
Article
PubMed
Google Scholar
Hindorff LA, Bonham VL, Brody LC, Ginoza MEC, Hutter CM, Manolio TA, et al. Prioritizing diversity in human genomics research. Nat Rev Genet. 2018;19(3):175–85. https://doi.org/10.1038/nrg.2017.89.
CAS
Article
PubMed
Google Scholar
Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature. 2016;538(7624):161–4. https://doi.org/10.1038/538161a.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mills MC, Rahal C. A scientometric review of genome-wide association studies. Commun Biol. 2019;2(1):9. https://doi.org/10.1038/s42003-018-0261-x.
Article
PubMed
PubMed Central
Google Scholar
Lek M, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–91. https://doi.org/10.1038/nature19057.
CAS
Article
PubMed
PubMed Central
Google Scholar
Karczewski KJ, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv. 2019:531210. https://doi.org/10.1101/531210.
Jurczak K. Ethnic groups and nationalities in Iceland. In: WorldAtlas; 2017.
Google Scholar
Tutton R. Race/ethnicity: multidisciplinary global contexts; 2009.
Google Scholar
Dyer C. Covid-19: rules on sharing confidential patient information are relaxed in England. BMJ. 2020:m1378. https://doi.org/10.1136/bmj.m1378.
Baughn LB, Pearce K, Larson D, Polley MY, Elhaik E, Baird M, et al. Differences in genomic abnormalities among African individuals with monoclonal gammopathies using calculated ancestry. Blood Cancer J. 2018;8(10):96. https://doi.org/10.1038/s41408-018-0132-1.
Article
PubMed
PubMed Central
Google Scholar
Baughn LB, et al. The CCND1 c.870G risk allele is enriched in individuals of African ancestry with plasma cell dyscrasias. Blood Cancer J. 2020;10(3). https://doi.org/10.1038/s41408-020-0294-5.
Hellwege JN, Keaton JM, Giri A, Gao X, Velez Edwards DR, Edwards TL. Population stratification in genetic association studies. Curr Protoc Hum Genet. 2017;95(1):1.22.1–1.22.23. https://doi.org/10.1002/cphg.48.
Article
Google Scholar
Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC, et al. Demonstrating stratification in a European American population. Nat Genet. 2005;37(8):868–72. https://doi.org/10.1038/ng1607.
CAS
Article
PubMed
Google Scholar
Chikhi L, Sousa VC, Luisi P, Goossens B, Beaumont MA. The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics. 2010;186(3):983–95. https://doi.org/10.1534/genetics.110.118661.
Article
PubMed
PubMed Central
Google Scholar
Elhaik E, Ryan DM. Pair matcher (PaM): fast model-based optimization of treatment/case-control matches. Bioinformatics. 2019;35(13):2243–50. https://doi.org/10.1093/bioinformatics/bty946.
CAS
Article
PubMed
Google Scholar
Wang Y, Localio R, Rebbeck TR. Evaluating bias due to population stratification in epidemiologic studies of gene-gene or gene-environment interactions. Cancer Epidemiol Biomark Prev. 2006;15(1):124–32. https://doi.org/10.1158/1055-9965.EPI-05-0304.
CAS
Article
Google Scholar
Lesko LJ, Woodcock J. Translation of pharmacogenomics and pharmacogenetics: a regulatory perspective. Nat Rev Drug Discov. 2004;3(9):763–9. https://doi.org/10.1038/nrd1499.
CAS
Article
PubMed
Google Scholar
Feero WG, Guttmacher AE, Collins FS. Genomic medicine - an updated primer. N Engl J Med. 2010;362(21):2001–11. https://doi.org/10.1056/NEJMra0907175.
CAS
Article
PubMed
Google Scholar
Guttmacher AE, Collins FS. Genomic medicine - A primer. N Engl J Med. 2002;347(19):1512–20. https://doi.org/10.1056/NEJMra012240.
CAS
Article
PubMed
Google Scholar
Johnson SB, Slade I, Giubilini A, Graham M. Rethinking the ethical principles of genomic medicine services. Eur J Hum Genet. 2019;28(2):147–54. https://doi.org/10.1038/s41431-019-0507-1.
Article
PubMed
PubMed Central
Google Scholar
NHS. Improving Outcomes Through Personalised Medicine. England: NHS; 2016.
Google Scholar
Pasic MD, Samaan S, Yousef GM. Genomic medicine: new frontiers and new challenges. Clin Chem. 2013;59(1):158–67. https://doi.org/10.1373/clinchem.2012.184622.
Brieger K, Zajac GJM, Pandit A, Foerster JR, Li KW, Annis AC, et al. Genes for good: engaging the public in genetics research via social media. Am J Hum Genet. 2019;105(1):65–77. https://doi.org/10.1016/j.ajhg.2019.05.006.
CAS
Article
PubMed
PubMed Central
Google Scholar
Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, Wilson R, et al. Implementing genomic medicine in the clinic: the future is here. Genet Med. 2013;15(4):258–67. https://doi.org/10.1038/gim.2012.157.
Article
PubMed
PubMed Central
Google Scholar
Weitzel KW, et al. The IGNITE network: a model for genomic medicine implementation and research. BMC Med Genet. 2016;9(1). https://doi.org/10.1186/s12920-015-0162-5.
De Barros Damgaard P, et al. 137 ancient human genomes from across the Eurasian steppes. Nature. 2018;557(7705):369–74. https://doi.org/10.1038/s41586-018-0094-2.
CAS
Article
Google Scholar
Altshuler DM, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467(7311):52–8. https://doi.org/10.1038/nature09298.
CAS
Article
PubMed
Google Scholar
Ooi BNS, Loh H, Ho PJ, Milne RL, Giles G, Gao C, et al. The genetic interplay between body mass index, breast size and breast cancer risk: a Mendelian randomization analysis. Int J Epidemiol. 2019;48(3):781–94. https://doi.org/10.1093/ije/dyz124.
Article
PubMed
PubMed Central
Google Scholar
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9. https://doi.org/10.1038/ng1847.
CAS
Article
PubMed
Google Scholar
Zhang Y, Pan W. Principal component regression and linear mixed model in association analysis of structured samples: competitors or complements? Genet Epidemiol. 2015;39(3):149–55. https://doi.org/10.1002/gepi.21879.
Article
PubMed
Google Scholar
Jiang D, Wang M. Recent developments in statistical methods for gwas and high-throughput sequencing association studies of complex traits. Biostat Epidemiol. 2018;2(1):132–59. https://doi.org/10.1080/24709360.2018.1529346.
Article
Google Scholar
Elhaik, E. Why most Principal Component Analyses (PCA) in population genetic studies are wrong. bioRxiv. 2021;2021.2004.2011.439381. https://doi.org/10.1101/2021.04.11.439381.
McVean G. A genealogical interpretation of principal components analysis. PLoS Genet. 2009;5(10):e1000686. https://doi.org/10.1371/journal.pgen.1000686.
CAS
Article
PubMed
PubMed Central
Google Scholar
Novembre J, Stephens M. Interpreting principal component analyses of spatial population genetic variation. Nat Genet. 2008;40(5):646–9. https://doi.org/10.1038/ng.139.
CAS
Article
PubMed
PubMed Central
Google Scholar
Locke AE, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206. https://doi.org/10.1038/nature14177.
CAS
Article
PubMed
PubMed Central
Google Scholar
Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res. 2005;15(11):1496–502. https://doi.org/10.1101/gr.4107905.
CAS
Article
PubMed
PubMed Central
Google Scholar
Purcell S. Variance components models for gene-environment interaction in twin analysis. Twin Res. 2002;5(6):554–71. https://doi.org/10.1375/136905202762342026.
Article
PubMed
Google Scholar
Rask-Andersen M, Karlsson T, Ek WE, Johansson Å. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status. PLoS Genet. 2017;13(9):e1006977. https://doi.org/10.1371/journal.pgen.1006977.
CAS
Article
PubMed
PubMed Central
Google Scholar
Katan MB. Apolipoprotein E isoforms, serum cholesterol, and cancer. Int J Epidemiol. 2004;33(1):9. https://doi.org/10.1093/ije/dyh312.
CAS
Article
PubMed
Google Scholar
Davey-Smith GD, Ebrahim S. “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22. https://doi.org/10.1093/ije/dyg070.
Article
Google Scholar
Lippman SM, et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the selenium and vitamin E cancer prevention trial (SELECT). JAMA. 2009;301(1):39–51. https://doi.org/10.1001/jama.2008.864.
CAS
Article
PubMed
Google Scholar
Mokry LE, Ahmad O, Forgetta V, Thanassoulis G, Richards JB. Mendelian randomisation applied to drug development in cardiovascular disease: a review. J Med Genet. 2015;52(2):71–9. https://doi.org/10.1136/jmedgenet-2014-102438.
Hayeck TJ, Zaitlen NA, Loh PR, Vilhjalmsson B, Pollack S, Gusev A, et al. Mixed model with correction for case-control ascertainment increases association power. Am J Hum Genet. 2015;96(5):720–30. https://doi.org/10.1016/j.ajhg.2015.03.004.
CAS
Article
PubMed
PubMed Central
Google Scholar
Smith GD. Mendelian randomization for strengthening causal inference in observational studies: application to gene × environment interactions. Perspect Psychol Sci. 2010;5(5):527–45. https://doi.org/10.1177/1745691610383505.
Article
PubMed
Google Scholar
Timpson NJ, Greenwood CMT, Soranzo N, Lawson DJ, Richards JB. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat Rev Genet. 2018;19(2):110–24. https://doi.org/10.1038/nrg.2017.101.
CAS
Article
PubMed
Google Scholar
Burgess S, Thompson SG. Mendelian randomization: methods for using genetic variants in causal estimation. London, UK: Chapman & Hall/CRC Press; 2015. https://doi.org/10.1201/b18084.
Koellinger PD, De Vlaming R. Mendelian randomization: the challenge of unobserved environmental confounds. Int J Epidemiol. 2019;48(3):665–71. https://doi.org/10.1093/ije/dyz138.
Article
PubMed
PubMed Central
Google Scholar
Scheinfeldt LB, et al. Challenges in translating GWAS results to clinical care. Int J Mol Sci. 2016;17(8). https://doi.org/10.3390/ijms17081267.
Bergholdt HKM, Nordestgaard BG, Ellervik C. Milk intake is not associated with low risk of diabetes or overweight-obesity: a Mendelian randomization study in 97,811 Danish individuals. Am J Clin Nutr. 2015;102(2):487–96. https://doi.org/10.3945/ajcn.114.105049.
CAS
Article
PubMed
Google Scholar
Hemani G, et al. MR-base: a platform for systematic causal inference across the phenome using billions of genetic associations. bioRxiv. 2016:078972. https://doi.org/10.1101/078972.
Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48(7):709–17. https://doi.org/10.1038/ng.3570.
CAS
Article
PubMed
PubMed Central
Google Scholar
Loh PR, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK, Salem RM, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet. 2015;47(3):284–90. https://doi.org/10.1038/ng.3190.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sohail M, et al. Polygenic adaptation on height is overestimated due to uncorrected stratification in genome-wide association studies. eLife. 2019;8. https://doi.org/10.7554/eLife.39702.
Berg JJ, et al. Reduced signal for polygenic adaptation of height in UK biobank. eLife. 2019;8. https://doi.org/10.7554/eLife.39725.
Bulik-Sullivan B, et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 2015;47(3):291–5. https://doi.org/10.1038/ng.3211.
CAS
Article
PubMed
PubMed Central
Google Scholar
Khan SS, Cooper R, Greenland P. Do polygenic risk scores improve patient selection for prevention of coronary artery disease? JAMA. 2020;323(7):614–5. https://doi.org/10.1001/jama.2019.21667.
Article
PubMed
Google Scholar
Wellenreuther M, Hansson B. Detecting polygenic evolution: problems, pitfalls, and promises. Trends Genet. 2016;32(3):155–64. https://doi.org/10.1016/j.tig.2015.12.004.
CAS
Article
PubMed
Google Scholar
Finan C, Gaulton A, Kruger FA, Lumbers RT, Shah T, Engmann J, et al. The druggable genome and support for target identification and validation in drug development. Sci Transl Med. 2017;9(383):eaag1166. https://doi.org/10.1126/scitranslmed.aag1166.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20(8):467–84. https://doi.org/10.1038/s41576-019-0127-1.
CAS
Article
PubMed
Google Scholar
Adeyemo A, Rotimi C. Genetic variants associated with complex human diseases show wide variation across multiple populations. Public Health Genomics. 2009;13(2):72–9. https://doi.org/10.1159/000218711.
Article
PubMed
PubMed Central
Google Scholar
Daar AS, Singer PA. Pharmacogenetics and geographical ancestry: implications for drug development and global health. Nat Rev Genet. 2005;6(3):241–6. https://doi.org/10.1038/nrg1559.
CAS
Article
PubMed
Google Scholar
Ioannidis JPA, Ntzani EE, Trikalinos TA. “Racial” differences in genetic effects for complex diseases. Nat Genet. 2004;36(12):1312–8. https://doi.org/10.1038/ng1474.
CAS
Article
PubMed
Google Scholar
Schärfe CPI, Tremmel R, Schwab M, Kohlbacher O, Marks DS. Genetic variation in human drug-related genes. Genome Med. 2017;9(1):117. https://doi.org/10.1186/s13073-017-0502-5.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lewis LD. Personalized drug therapy; the genome, the chip and the physician. Br J Clin Pharmacol. 2005;60(1):1–4. https://doi.org/10.1111/j.1365-2125.2005.02457.x.
Article
PubMed
PubMed Central
Google Scholar
Ortega VE, Meyers DA. Pharmacogenetics: implications of race and ethnicity on defining genetic profiles for personalized medicine. J Allergy Clin Immunol. 2014;133(1):16–26. https://doi.org/10.1016/j.jaci.2013.10.040.
CAS
Article
PubMed
PubMed Central
Google Scholar
Elhaik E, Greenspan E, Staats S, Krahn T, Tyler-Smith C, Xue Y, et al. The GenoChip: a new tool for genetic anthropology. Genome Biol Evol. 2013;5(5):1021–31. https://doi.org/10.1093/gbe/evt066.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4(1):7. https://doi.org/10.1186/s13742-015-0047-8.
CAS
Article
PubMed
PubMed Central
Google Scholar
Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A, et al. Genes mirror geography within Europe. Nature. 2008;456(7218):98–101. https://doi.org/10.1038/nature07331.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang WY, Novembre J, Eskin E, Halperin E. A model-based approach for analysis of spatial structure in genetic data. Nat Genet. 2012;44(6):725–31. https://doi.org/10.1038/ng.2285.
CAS
Article
PubMed
PubMed Central
Google Scholar
Galinsky KJ, Loh PR, Mallick S, Patterson NJ, Price AL. Population structure of UK biobank and ancient Eurasians reveals adaptation at genes influencing blood pressure. Am J Hum Genet. 2016;99(5):1130–9. https://doi.org/10.1016/j.ajhg.2016.09.014.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88(1):76–82. https://doi.org/10.1016/j.ajhg.2010.11.011.
CAS
Article
PubMed
PubMed Central
Google Scholar
Van der Auwera GA, et al. From fastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;(SUPL.43). https://doi.org/10.1002/0471250953.bi1110s43.
Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS Genet. 2012;8(1):e1002453. https://doi.org/10.1371/journal.pgen.1002453.
CAS
Article
PubMed
PubMed Central
Google Scholar
Loh PR, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed-model association for biobank-scale datasets. Nat Genet. 2018;50(7):906–8. https://doi.org/10.1038/s41588-018-0144-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Conomos MP, et al. Genome-wide control of population structure and relatedness in genetic association studies via linear mixed models with orthogonally partitioned structure. bioRxiv. 2018:409953. https://doi.org/10.1101/409953.
Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164(4):1567–87.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;55(2):945–59.
Article
Google Scholar
Raj A, Stephens M, Pritchard JK. FastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics. 2014;197(2):573–89. https://doi.org/10.1534/genetics.114.164350.
Article
PubMed
PubMed Central
Google Scholar
Gopalan P, Hao W, Blei DM, Storey JD. Scaling probabilistic models of genetic variation to millions of humans. Nat Genet. 2016;48(12):1587–90. https://doi.org/10.1038/ng.3710.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lawson DJ, van Dorp L, Falush D. A tutorial on how not to over-interpret STRUCTURE and ADMIXTURE bar plots. Nat Commun. 2018;9(1):3258. https://doi.org/10.1038/s41467-018-05257-7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Weiss KM, Lambert BW. What type of person are you? Old-fashioned thinking even in modern science. Cold Spring Harb Perspect Biol. 2014;6(1). https://doi.org/10.1101/cshperspect.a021238.
Kuhn JMM, Jakobsson M, Günther T. Estimating genetic kin relationships in prehistoric populations. PLoS One. 2018;13(4):e0195491. https://doi.org/10.1371/journal.pone.0195491.
CAS
Article
Google Scholar
Moltke I, Albrechtsen A. RelateAdmix: a software tool for estimating relatedness between admixed individuals. Bioinformatics. 2014;30(7):1027–8. https://doi.org/10.1093/bioinformatics/btt652.
CAS
Article
PubMed
Google Scholar
Speed D, Balding DJ. Relatedness in the post-genomic era: is it still useful? Nat Rev Genet. 2015;16(1):33–44. https://doi.org/10.1038/nrg3821.
CAS
Article
PubMed
Google Scholar
Thompson EA. The estimation of pairwise relationships. Ann Hum Genet. 1975;39(2):173–88. https://doi.org/10.1111/j.1469-1809.1975.tb00120.x.
CAS
Article
PubMed
Google Scholar
Leslie S, et al. The fine-scale genetic structure of the British population. Nature. 2015;519(7543):309–14. https://doi.org/10.1038/nature14230.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pan X, Wang Y, Wong EHM, Telenti A, Venter JC, Jin L. Fine population structure analysis method for genomes of many. Scientific Reports. 2017;7(1).
Dias-Alves T, Mairal J, Blum MGB. Loter: a software package to infer local ancestry for a wide range of species. Mol Biol Evol. 2018;35(9):2318–26. https://doi.org/10.1093/molbev/msy126.
CAS
Article
PubMed
PubMed Central
Google Scholar
Illumina Microarray Solutions, 370–2013-003; 2013. Available at: https://www.illumina.com/content/dam/illumina-marketing/documents/applications/genotyping/Microarray_Solutions.pdf.
Lazaridis I, et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature. 2014;513(7518):409–13. https://doi.org/10.1038/nature13673.
CAS
Article
PubMed
PubMed Central
Google Scholar
Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics. 2011;12(1). https://doi.org/10.1186/1471-2105-12-246.
Hellenthal G, Busby GBJ, Band G, Wilson JF, Capelli C, Falush D, et al. A genetic atlas of human admixture history. Science. 2014;343(6172):747–51. https://doi.org/10.1126/science.1243518.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pagani L, et al. Genomic analyses inform on migration events during the peopling of Eurasia. Nature. 2016;538(7624):238–42. https://doi.org/10.1038/nature19792.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chacón-Duque JC, Adhikari K, Fuentes-Guajardo M, Mendoza-Revilla J, Acuña-Alonzo V, Barquera R, et al. Latin Americans show wide-spread Converso ancestry and imprint of local native ancestry on physical appearance. Nat Commun. 2018;9(1):5388. https://doi.org/10.1038/s41467-018-07748-z.
CAS
Article
PubMed
PubMed Central
Google Scholar
Flegontov P, Changmai P, Zidkova A, Logacheva MD, Altınışık NE, Flegontova O, et al. Genomic study of the Ket: a Paleo-Eskimo-related ethnic group with significant ancient north Eurasian ancestry. Sci Rep. 2016;6(1). https://doi.org/10.1038/srep20768.
Das R, et al. The origins of Ashkenaz, Ashkenazic Jews, and Yiddish. Front Genet. 2017;8(JUN). https://doi.org/10.3389/fgene.2017.00087.
Esposito U, Das R, Syed S, Pirooznia M, Elhaik E. Ancient ancestry informative markers for identifying fine-scale ancient population structure in eurasians. Genes. 2018;9(12). https://doi.org/10.3390/genes9120625.
Kalinowski ST. The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity. 2011;106(4):625–32. https://doi.org/10.1038/hdy.2010.95.
CAS
Article
PubMed
Google Scholar
Lombaert E, Guillemaud T, Deleury E. Biases of STRUCTURE software when exploring introduction routes of invasive species. Heredity. 2018;120(6):485–99. https://doi.org/10.1038/s41437-017-0042-1.
Article
PubMed
PubMed Central
Google Scholar
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655–64. https://doi.org/10.1101/gr.094052.109.
CAS
Article
PubMed
PubMed Central
Google Scholar
Tang H, Peng J, Wang P, Risch NJ. Estimation of individual admixture: analytical and study design considerations. Genet Epidemiol. 2005;28(4):289–301. https://doi.org/10.1002/gepi.20064.
Article
PubMed
Google Scholar
Guillot G, Estoup A, Mortier F, Cosson JF. A spatial statistical model for landscape genetics. Genetics. 2005a;170(3):1261–80. https://doi.org/10.1534/genetics.104.033803.
CAS
Article
PubMed
PubMed Central
Google Scholar
Guillot G, Mortier F, Estoup A. GENELAND: a computer package for landscape genetics. Mol Ecol Notes. 2005b;5(2):712–5. https://doi.org/10.1111/j.1471-8286.2005.01031.x.
CAS
Article
Google Scholar
Durand E, Jay F, Gaggiotti OE, Francois O. Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol. 2009;26(9):1963–73. https://doi.org/10.1093/molbev/msp106.
CAS
Article
PubMed
Google Scholar
Corander J, Waldmann P, Sillanpää MJ. Bayesian analysis of genetic differentiation between populations. Genetics. 2003;163(1):367–74.
CAS
Article
PubMed
PubMed Central
Google Scholar
Blair C, et al. A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol Ecol Resour. 2012;12(5):822–33. https://doi.org/10.1111/j.1755-0998.2012.03151.x.
Article
PubMed
Google Scholar
Chen C, et al. Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes. 2007;7(5):747–56. https://doi.org/10.1111/j.1471-8286.2007.01769.x.
Article
Google Scholar
Safner T, Miller MP, McRae BH, Fortin MJ, Manel S. Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics. Int J Mol Sci. 2011;12(2):865–89. https://doi.org/10.3390/ijms12020865.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ball MC, Finnegan L, Manseau M, Wilson P. Integrating multiple analytical approaches to spatially delineate and characterize genetic population structure: an application to boreal caribou (Rangifer tarandus caribou) in Central Canada. Conserv Genet. 2010;11(6):2131–43. https://doi.org/10.1007/s10592-010-0099-3.
Article
Google Scholar
Coulon A, et al. Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol. 2006;15(6):1669–79. https://doi.org/10.1111/j.1365-294X.2006.02861.x.
CAS
Article
PubMed
Google Scholar
Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE Jr. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet. 2006;7(2):295–302. https://doi.org/10.1007/s10592-005-9098-1.
Article
Google Scholar
Frantz AC, Cellina S, Krier A, Schley L, Burke T. Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol. 2009;46(2):493–505. https://doi.org/10.1111/j.1365-2664.2008.01606.x.
Article
Google Scholar
García-Pérez MÁ. Bayesian estimation with informative priors is indistinguishable from data falsification. Span J Psychol. 2019;22:E45. https://doi.org/10.1017/sjp.2019.41.
Article
PubMed
Google Scholar
Price AL, Tandon A, Patterson N, Barnes KC, Rafaels N, Ruczinski I, Beaty TH, Mathias R, Reich D, Myers S, Pritchard JK. Sensitive Detection of Chromosomal Segments of Distinct Ancestry in Admixed Populations. PLoS Genetics. 2009;5(6):e1000519.
Salter-Townshend M, Myers S. Fine-scale inference of ancestry segments without prior knowledge of admixing groups. Genetics. 2019;212(3):869–89. https://doi.org/10.1534/genetics.119.302139.
Article
PubMed
PubMed Central
Google Scholar
Baran Y, Pasaniuc B, Sankararaman S, Torgerson DG, Gignoux C, Eng C, et al. Fast and accurate inference of local ancestry in Latino populations. Bioinformatics. 2012;28(10):1359–67. https://doi.org/10.1093/bioinformatics/bts144.
CAS
Article
PubMed
PubMed Central
Google Scholar
Durbin R. Efficient haplotype matching and storage using the positional burrows-wheeler transform (PBWT). Bioinformatics. 2014;30(9):1266–72. https://doi.org/10.1093/bioinformatics/btu014.
CAS
Article
PubMed
PubMed Central
Google Scholar
Schraiber JG, Akey JM. Methods and models for unravelling human evolutionary history. Nat Rev Genet. 2015;16(12):727–40. https://doi.org/10.1038/nrg4005.
CAS
Article
PubMed
Google Scholar
Wang J. An estimator for pairwise relatedness using molecular markers. Genetics. 2002;160(3):1203–15. https://doi.org/10.1093/genetics/160.3.1203.
Wang B, Sverdlov S, Thompson E. Efficient estimation of realized kinship from SNP genotypes. Genetics. 2016;205(3):1–23. https://doi.org/10.1534/genetics.116.197004.
CAS
Article
Google Scholar
Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867–73. https://doi.org/10.1093/bioinformatics/btq559.
CAS
Article
PubMed
PubMed Central
Google Scholar
Conomos MP, et al. Model-free estimation of recent genetic relatedness. Am J Hum Genet. 2016;98(1):127–48. https://doi.org/10.1016/j.ajhg.2015.11.022.
CAS
Article
PubMed
PubMed Central
Google Scholar
Thornton T, Tang H, Hoffmann TJ, Ochs-Balcom HM, Caan BJ, Risch N. Estimating kinship in admixed populations. Am J Hum Genet. 2012;91(1):122–38. https://doi.org/10.1016/j.ajhg.2012.05.024.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ramstetter MD, Dyer TD, Lehman DM, Curran JE, Duggirala R, Blangero J, et al. Benchmarking relatedness inference methods with genome-wide data from thousands of relatives. Genetics. 2017;207(1):75–82. https://doi.org/10.1534/genetics.117.1122.
CAS
Article
PubMed
PubMed Central
Google Scholar
Durand EY, Eriksson N, Mclean CY. Reducing pervasive false-positive identical-by-descent segments detected by large-scale pedigree analysis. Mol Biol Evol. 2014;31(8):2212–22. https://doi.org/10.1093/molbev/msu151.
CAS
Article
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75. https://doi.org/10.1086/519795.
CAS
Article
PubMed
PubMed Central
Google Scholar
Stevens EL, Heckenberg G, Roberson EDO, Baugher JD, Downey TJ, Pevsner J. Inference of relationships in population data using identity-by-descent and identity-by-state. PLoS Genet. 2011;7(9):e1002287. https://doi.org/10.1371/journal.pgen.1002287.
CAS
Article
PubMed
PubMed Central
Google Scholar
Browning BL, Browning SR. A fast, powerful method for detecting identity by descent. Am J Hum Genet. 2011;88(2):173–82. https://doi.org/10.1016/j.ajhg.2011.01.010.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gusev A, Lowe JK, Stoffel M, Daly MJ, Altshuler D, Breslow JL, et al. Whole population, genome-wide mapping of hidden relatedness. Genome Res. 2009;19(2):318–26. https://doi.org/10.1101/gr.081398.108.
CAS
Article
PubMed
PubMed Central
Google Scholar
Browning BL, Browning SR. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics. 2013;194(2):459–71. https://doi.org/10.1534/genetics.113.150029.
Article
PubMed
PubMed Central
Google Scholar
Cassidy LM, Martiniano R, Murphy EM, Teasdale MD, Mallory J, Hartwell B, et al. Neolithic and bronze age migration to Ireland and establishment of the insular Atlantic genome. Proc Natl Acad Sci U S A. 2016;113(2):368–73. https://doi.org/10.1073/pnas.1518445113.