Lemmer, K. (2014). Einführungsvortrag "Autonomes Fahren": Deutsches Zentrum für Luft- und Raumfahrt e.V.
Bartels, A., To T-B, Karrenberg, S., & Weiser, A. (2011). Hochautomatisches Fahren auf der Autobahn. ATZ Automobiltech Z, 113(9), 652–657.
Article
Google Scholar
Carsten, O., Lai, F. C. H., Barnard, Y., Jamson, A. H., & Merat, N. (2012). Control task substitution in Semiautomated driving: Does it matter what aspects are automated? Human Factors: The Journal of the Human Factors and Ergonomics Society, 54(5), 747–761.
Article
Google Scholar
Biever, W., Angell, L., & Seaman, S. (2019). Automated Driving System Collisions: Early Lessons. Human Factors: The Journal of the Human Factors and Ergonomics Society Special Issue on In-Vehicle Automation: 1-11.
SAE. J3016 Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles: Society of Automotive Engineers; 2018.
Google Scholar
Naujoks, F., Befelein, D., Wiedemann, K., & Neukum, A. (2018). A Review of Non-driving-related Tasks Used in Studies on Automated Driving. In N. A. Stanton (Ed.), Advances in human aspects of transportation: Proceedings of the AHFE 2017 International Conference on Human Factors in Transportation, Los Angeles, California, USA, (pp. 525–537). Cham: Springer.
Chapter
Google Scholar
Wandtner, B., Schömig, N., & Schmidt, G. (2018). Effects of non-driving related task modalities on takeover performance in highly automated driving. Human Factors: The Journal of the Human Factors and Ergonomics Society, 60(6), 870–881.
Article
Google Scholar
Stanton, N. A., & Young, M. S. (2000). A proposed psychological model of driving automation. Theor Issues Ergon Sci, 1(4), 315–331.
Article
Google Scholar
Winter, J. d., Happee, R., Martens, M. H., & Stanton, N. A. (2014). Effects of adaptive cruise control and highly automated driving on workload and situation awareness: A review of the empirical evidence. Transport Res F: Traffic Psychol Behav, 27(Part B), 196–217.
Article
Google Scholar
Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2008). Situation awareness, mental workload, and Trust in Automation: Viable, empirically supported cognitive engineering constructs. Journal of Cognitive Engineering and Decision Making, 2(2), 140–160.
Article
Google Scholar
Sarter, N. B., & Woods, D. D. (1991). Situation awareness: A critical but ill-defined phenomenon. Int J Aviat Psychol, 1(1), 45–57.
Article
Google Scholar
Landau, K. (2005). LexAB – Kleines Lexikon arbeitswissenschaftlicher Begriffe. Stuttgart: Ergonomia Verlag.
Google Scholar
Luczak, H. (1975). Untersuchungen informatorischer Belastung und Beanspruchung des Menschen. Düsseldorf: VDI-Verlag.
Google Scholar
O'Donnell, R. D., & Eggemeier, F. T. (1986). Workload Assessment Methodology. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Handbook of Perception and Human Performance, (2nd ed., pp. 1–49). Oxford: John Wiley & Sons.
Google Scholar
DeWaard D. The measurement of Drivers' mental workload. Dissertation, Psychologische, Pedagogische en Sociologische Wetenschappen, Universiteit Groningen 1996.
Google Scholar
Young, M. S., Brookhuis, K. A., Wickens, C. D., & Hancock, P. A. (2015). State of science: Mental workload in ergonomics. Ergonomics, 58(1), 1–17.
Article
Google Scholar
Wickens, C. D. (2002). Multiple resources and performance prediction. Theor Issues Ergon Sci, 3(2), 159–177.
Article
Google Scholar
Ribback S. Psychophysiologische Untersuchung mentaler Beanspruchung in simulierten Mensch-Maschine-Interaktionen. Dissertation, Lehrstuhl für Arbeits-, Betriebs- und Organisationspsychologie, Universität Potsdam 2003.
Google Scholar
Packebusch, L. (2003). Psychische Belastung und Beanspruchung–Normung für die Praxis. Wirtschaftspsychologie aktuell, 3(4), 32–36.
Google Scholar
Zeeb, K. (2016). Der Einfluss fahfremder Tätigkeiten auf die Fahrerübernahme während des hochautomatisierten Fahrens. Dissertation, Insitut für experimentelle Psychologie, Heinrich-Heine-Universität.
de Winter, J., Stanton, N. A., Price, J. S., & Mistry, H. (2016). The effects of driving with different levels of unreliable automation on self-reported workload and secondary task performance. Int J Veh Des, 70(4), 297–324.
Article
Google Scholar
Eriksson, A., & Stanton, N. A. (2017). Takeover time in highly automated vehicles: Noncritical transitions to and from manual control. Human Factors: The Journal of the Human Factors and Ergonomics Society, 59(4), 689–705.
Article
Google Scholar
Petermann-Stock, I., Hackenberg, L., Muhr, T., & Mergl, C. (2013). Wie lange braucht der Fahrer?: Eine Analyse zu Übernahmezeiten aus verschiedenen Nebentätigkeiten während einer hochautomatisierten Staufahrt. In TÜV SÜD (Ed.), Wie lange braucht der Fahrer?: Eine Analyse zu Übernahmezeiten aus verschiedenen Nebentätigkeiten während einer hochautomatisierten Staufahrt, (pp. 1–26).
Google Scholar
Zhang, B., de Winter, J., Varotto, S., Happee, R., & Martens, M. (2019). Determinants of take-over time from automated driving: A meta-analysis of 129 studies. Transport Res F: Traffic Psychol Behav, 64, 285–307.
Article
Google Scholar
Vogelpohl, T., Vollrath, M., Kühn, M., Hummel, T., & Gehlert, T. (2016 Forschungsbericht Nr). Übergabe von hochautomatisiertem Fahren zu manueller Steuerung, (p. 39). Berlin: Gesamtverband der Deutschen Versicherungswirtschaft e. V.
Google Scholar
Walch, M., Mühl, K., Kraus, J., Stoll, T., Baumann, M., & Weber, M. (2017). From Car-Driver-Handovers to Cooperative Interfaces: Visions for Driver–Vehicle Interaction in Automated Driving. In G. Meixner, & C. Müller (Eds.), Automotive User Interfaces: Creating Interactive Experiences in the Car, (pp. 273–294). Basel: Springer International Publishing.
Chapter
Google Scholar
Damböck, D., Farid, M., Tönert, L., & Bengler, K. (2012). Übernahmezeiten beim hochautomatisierten Fahren. München: Tagung Fahrerassistenz.
Google Scholar
Radlmayr, J., & Bengler, K. (2015. FAT-Schriftenreihe). Literaturanalyse und Methodenauswahl zur Gestaltung von Systemen zum hochautomatisierten Fahren: Literature Survey and Description of Methods for the Development of Highly Automated Driving, (p. 276). Berlin: FAT - Forschungsvereinigung Automobiltechnik e.V.
Google Scholar
Radlmayr, J., Gold, C., Lorenz, L., Farid, M., & Bengler, K. (2014). How traffic situations and non-driving related tasks affect the take-over quality in highly automated driving. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 58(1), 2063–2067.
Article
Google Scholar
Gold, C., Körber, M., Lechner, D., & Bengler, K. (2016). Taking over control from highly automated vehicles in complex traffic situations: The role of traffic density. Human Factors: The Journal of the Human Factors and Ergonomics Society, 58(4), 642–652.
Article
Google Scholar
Shen, S., & Neyens, D. M. (2014). Assessing drivers’ performance when automated driver support systems fail with different levels of automation. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 58(1), 2068–2072.
Article
Google Scholar
Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information. J Exp Psychol, 55(4), 352–358.
Article
Google Scholar
ISO/TS 14198:2019–04 (2019). Straßenfahrzeuge - Ergonomische Aspekte von Fahrerinformations- und Assistenzsystemen - Kalibrierungsaufgaben für Methoden, welche auf Faheranfragen zugreifen, um fahrzeuginterne Systeme zu verwenden. Berlin: Beuth.
Google Scholar
Feldhütter, A., Gold, C., Schnieder, S., & Bengler, K. (2017). How the Duration of Automated DrivingInfluences Take-Over Performanceand Gaze Behavior. In C. Schlick, S. Duckwitz, F. Flemisch, et al. (Eds.), Advances in Ergonomic Design of Systems, Products and Processes, (pp. 309–318). Berlin, Heidelberg: Springer Berlin Heidelberg.
Chapter
Google Scholar
Gold, C., Damböck, D., Lorenz, L., & Bengler, K. (2013). Take over!: How long does it take to get the driver back into the loop? Proceedings of the Human Factors Society Annual Meeting, 57(1), 1938–1942.
Article
Google Scholar
Lorenz, L., Kerschbaum, P., & Schumann, J. (2014). Designing take over scenarios for automated driving. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 58(1), 1681–1685.
Article
Google Scholar
Körber, M., Gold, C., Lechner, D., & Bengler, K. (2016). The influence of age on the take-over of vehicle control in highly automated driving. Transport Res F: Traffic Psychol Behav, 39, 19–32.
Article
Google Scholar
Naujoks, F., Mai, C., & Neukum, A. (2014). The Effect of Urgency of Take-Over Requests During Highly Automated Driving Under Distraction Conditions. In R.-L. Jang, & T. Ahram (Eds.), Advances in Physical Ergonomics and Human Factors: Part II: 5th International Conference on Applied Human Factors and Ergonomics, (pp. 1–8). Louisville, Ky: AHFE Conference.
Google Scholar
Zeeb, K., Buchner, A., & Schrauf, M. (2016). Is take-over time all that matters? The impact of visual-cognitive load on driver take-over quality after conditionally automated driving. Accid Anal Prev, 92, 230–239.
Article
Google Scholar
Müller, AL. (2020). Auswirkungen von natürlichen fahrfremden Tätigkeiten bei hochautomatisierter Fahrt. Dissertation, Instiut für Arbeitswissenschaft, Technische Universität Darmstadt.
Schwalm, M. (2009). Pupillometrie als Methode zur Erfassung mentaler Beanspruchungen im automotiven Kontext. Dissertation, Philosophische Fakultät, Universität des Saarlandes 2009.
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (task load index): Results of empirical and theoretical research. Adv Psychol, 52, 139–183.
Article
Google Scholar
Reid, G. B., & Nygren, T. E. (1988). The Subjective Workload Assessment Technique: A Scaling Procedure for Measuring Mental Workload. In N. Meshkati, & P. A. Hancock (Eds.), Human Mental Workload, (pp. 185–218). Amsterdam: Elsevier Science Publishers B.V. (North-Holland).
Chapter
Google Scholar
Tsang, P. S., & Velazquez, V. L. (1996). Diagnosticity and multidimensional subjective workload ratings. Ergonomics, 39(3), 358–381.
Article
Google Scholar
Rubio, S., Diaz, E., Martin, J., & Puente, J. M. (2004). Evaluation of subjective mental workload: A comparison of SWAT, NASA-TLX, and workload profile methods. Appl Psychol, 53(1), 61–86.
Article
Google Scholar
Estes, S. (2015). The workload curve: Subjective mental workload. Human Factors: The Journal of the Human Factors and Ergonomics Society, 57(7), 1174–1187.
Article
Google Scholar
Grier, R. A. (2015). How high is high? A meta-analysis of NASA-TLX global workload scores. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 59(1), 1727–1731.
Article
Google Scholar
Sanders, A. F. (1983). Towards a model of stress and human performance. Acta Psychol, 53(1), 61–97.
Article
Google Scholar
Manzey, D. (1998). Psychophysiologie mentaler Beanspruchung. In F. Rösler (Ed.), Ergebnisse und Anwendungen der Psychophysiologie, (1st ed., pp. 799–864). Göttingen: Hogrefe.
Google Scholar
Miller, S. (2001). Workload measures. Literature review. Iowa City.
Fu, R., Guo, Y., Yang, C., et al. (2011). Research on heart rate and eye movement as indicators of drivers’ mental workload. Washington DC: Transportation Research Board 3rd International Conference on Road Safety and Simulation.
Google Scholar
Mulder, G., & Mulder-Hajonides, W. R. (1973). Mental load and the measurement of heart rate variability. Ergonomics, 16(1), 69–83.
Article
Google Scholar
Sammito, S., & Böckelmann, I. (2015). Analyse der Herzfrequenzvariabilität. Herz, 40(1), 76–84.
Article
Google Scholar
Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit formation. J Comp Neurol Psychol, 18(5), 459–482.
Article
Google Scholar
Gunning, D. (1978). Time estimation as a technique to measure workload. Proceedings of the Human Factors Society Annual Meeting, 22(1), 41–45.
Article
Google Scholar
Schlick, C., Bruder, R., & Luczak, H. (2018). Arbeitswissenschaft, (4th ed., ). Berlin: Springer Vieweg.
Book
Google Scholar
Farmer, E., & Brownson, A. (2003). Review of workload measurement, analysis and interpretation methods: European Organisationfor the safety of air navigation; CARE-Integra-TRS-130-02-WP2.
Google Scholar
Laurig, W. (1992). Grundzüge der Ergonomie, (4th ed., ). Beuth: Berlin, Köln.
Google Scholar
ISO 17488:2016–10 (2016). Straßenfahrzeuge - Fahrerinformationen und Assistenzsysteme - Erkennungsreaktionsaufgabe (DRT) für den Zugriff beabsichtigter Effekte von kognitiver Belastungen während der Fahrt. Berlin: Beuth.
Google Scholar
Gasser, T. M., Arzt, C., Ayoubi, M., et al. (2012. BASt-Bericht). Ergebnisse der Projektgruppe Automatisierung: Rechtsfolgen zunehmender Fahrzeugautomatisierung, (p. F83).
Google Scholar
Müller AL, Ogrizek M, Bier LR, Abendroth B (2018). Design concept for a tactile and visual take-over request in a conditional automated vehicle during non-driving-related tasks. Fort A. and Jallais C. (Eds.). Proceedings of the 6th Driver Distraction and Inattention conference, Gothenburg, Sweden 15–17. (online).
Zöller, I. M., Diederich, C., Abendroth, B., & Bruder, R. (2013). Fahrsimulatorvalidität - Systematisierung und quantitative Analyse bisheriger Forschungen. Zeitschrift für Arbeitswissenschaft, 67(4), 197–206.
Article
Google Scholar
Charness, G., Gneezy, U., & Kuhn, M. A. (2012). Experimental methods: Between-subject and within-subject design. J Econ Behav Organ, 81(1), 1–8.
Article
Google Scholar
Malik, M. (1996). Heart rate variability. Eur Heart J, 17(3), 354–381.
Article
Google Scholar
Blankenberger, S., & Vorberg, D. (1998). Die Auswahl statistischer Tests und Maße. FlussdiagrammMartin-Luther-Universität Halle-Wittenberg; Technischen Universität Braunschweig.
Google Scholar
Stojmenova, K., & Sodnik, J. (2018). Detection-response task-uses and limitations. Sensors, 18, 1–17.
Article
Google Scholar
Harbluk JL, Burns PC, Tam J, Glazduri V, editors. Detection Response Tasks: Using Remote, Headmounted and Tactile Signals to Assess Cognitive Demand While Driving; 2018.
Mantzke, O., & Keinath, A. (2015). Relating the detection response task to critical events – Consequences of high cognitive workload to brake reaction times. Procedia Manufacturing, 3, 2381–2386.
Article
Google Scholar
Neubauer, C., Matthews, G., & Saxby, D. (2012). The effects of cell phone use and automation on driver performance and subjective state in simulated driving. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 1987–1991.
Article
Google Scholar
Bier, LR. (2019). Gamification zur Vorbeugung monotoniebedingter Müdigkeit bei der Fahrzeugführung-im Vergleich zur Fahrer-Beifahrerinteraktion. Dissertation, Institut für Arbeitswissenschaft, Technische Universität Darmstadt.
Godley, S. T., Triggs, T. J., & Fildes, B. N. (2002). Driving simulator validation for speed research. Accid Anal Prev, 34(5), 589–600.
Article
Google Scholar