Myocardial depression of sepsis
Sepsis is usually associated with a normal or high cardiac output; yet many studies have shown that myocardial depression can occur even early in the course of sepsis [1], so why is cardiac output not reduced? The pathophysiology of sepsis involves the release of cytokines, some of which are associated with abnormal calcium handling by the cardiac myocytes [2], leading to reduced myocardial contraction. Because of the simultaneous tachycardia and reduced vascular tone, however, afterload is reduced – and cardiac output can therefore be maintained or even increased. In addition, the hyperkinetic state seen in sepsis is typically preceded by fluid therapy. This situation is akin to the cyclist being too tired to push on the pedals, but being able to keep up speed because of a smooth downward sloping road.
Deleterious effects of inotropic therapy
As the long-distance cyclist will know, prolonged strenuous exercise can lead to high tissue oxygen demands, which can later result in impaired muscle contraction and poor performance. Positive inotropic drugs act by different mechanisms to increase the contractility of the heart, and as such have been proposed for use in patients with cardiac failure to increase myocardial contractility and hence cardiac output. Indeed, in the short-term, acute phase of heart failure, inotropic drugs can be useful to increase cardiac output. When considered in light of our analogy, however, it is easy to appreciate that excessive inotropic stimulation may increase the myocardial oxygen demand, leading ultimately to myo-cardial ischemia. Indeed, prolonged stimulation with long-term inotropic therapy has been shown to increase mortality rates in patients with chronic heart failure [3–5]. In contrast, reducing the force of contraction may enable the cyclist to pedal longer; this may account for some of the beneficial effects of prolonged β-blockade therapy in the treatment of heart failure.
Beneficial effects of vasodilating substances
Arterial vasodilator therapy results in significant improvements in cardiac output in patients with heart failure by reducing afterload (cycling downhill). Interestingly, this therapeutic approach has been more successful than inotropic stimulation, and has been shown to reduce mortality rates in this patient population [6, 7]. An obvious limitation is the decrease in arterial pressure, which may compromise organ perfusion.
Potentially harmful effects of vasopressor agents
In contrast to the beneficial effects of vasodilator drugs, the administration of strong vasopressors may decrease cardiac output by increasing afterload, even in individuals with normal cardiac function. This effect is seen, for example, with phenylephrine, which has almost pure α-adrenergic effects. Vasopressin may also decrease cardiac output by increasing vascular tone [8–10]. Considering our analogy, this effect may be expected – increasing the slope of the road, or making the surface too uneven, will eventually force most cyclists to get off their bicycles and walk, thus reducing their speed considerably!
Even norepinephrine, which has some β-adrenergic properties, may decrease cardiac output in the absence of a reduction in vascular tone. The cyclist is pushing a bit harder on the bicycle's pedals, but as the road is now going uphill the bicycle's speed may decrease considerably. High doses of norepinephrine have been used as an experimental model of heart failure [11–13].
Effects of inodilating substances
Some drugs, such as phosphodiesterase inhibitors (milrinone, enoximone) and levosimendan, exert some inotropic effects in addition to vasodilating effects. This is analogous to pushing a bit harder on the bicycle's pedals at the same time as you pass the top of a hill and the road starts to go down again; the greater exertion may lead to fatigue, but the downhill slope helps to maintain speed. This is why these agents may increase myocardial oxygen requirements less than other inotropic drugs.
Effects of fluid administration
Fluid administration takes advantage of the Frank–Starling relationship to increase stroke volume and cardiac output. Although an excessive increase in the end-diastolic volume may increase myocardial oxygen requirements, this intervention is associated with relatively limited consequences, as compared with catecholamines. Fluid administration is like adding a tailwind to the cyclist.
Effects of calcium entry blockers on cardiac output
As calcium is essential to myocardial contraction, calcium entry blockers are expected to decrease the force of contraction of the myocardium. This is observed in isolated myocardium, but not in living organisms, where the simultaneous decrease in vascular tone (especially with the dihydropyridine derivatives) helps to maintain and even increase cardiac output. The cyclist is tired, but the road is smoother, with a gentler upward slope!