Earth, Planets and Space

, Volume 58, Issue 2, pp e13–e16 | Cite as

Mass-redistribution-induced crustal deformation of global satellite laser ranging stations due to non-tidal ocean and land water circulation

  • Hiroshi Takiguchi
  • Toshimichi Otsubo
  • Yoichi Fukuda
Open Access


The effect of the non-tidal ocean load (NTOL) and the continental water load (CWL) on crustal deformation are calculated for global satellite laser ranging (SLR) stations and on 4°×4° grids (only over the land). For the regions most severely affected, the peak-to-peak displacements due to the NTOL are found to be as large as 3 mm for the horizontal components and 10 mm for the vertical component. The peak-to-peak displacements due to the CWL reach 3 mm for the horizontal components and 15 mm for the vertical component. We apply the time series of NTOL and CWL to precise SLR analysis. The LAGEOS orbit analysis reveals that the Estimating the Circulation and Climate of the Ocean (ECCO) model makes the root mean square (RMS) of the range residual 0.2% smaller, and that the CWL makes it 0.8% smaller, compared with the case where loading displacement is neglected. On the other hand, with the NTOL derived from Topex/Poseidon altimetry data, the SLR orbit fit is not improved.

Key words

Satellite laser ranging non-tidal ocean load continental water load crustal deformation Topex/Poseidon ECCO 


  1. Dong, D., P. Fang, Y. Bock, M. K. Cheng, and S. Miyazaki, Anatomy of apparent seasonal variations from GPS-derived site position time series, J. Geophys. Res., 107(B4), 2075, 2002.CrossRefGoogle Scholar
  2. Fan, Y. and H. van den Dool, Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present, J. Geophys. Res., 109, D10102, 2004.CrossRefGoogle Scholar
  3. Farrell, W. E., Deformation of the Earth by surface loads, Rev. Geophys. and Spac. Phys., 10(3), 751–797, 1972.Google Scholar
  4. Fukumori, I., A partitioned Kalman filter and smoother, Mon. Weather Rev., 130, 1370–1383, 2002.CrossRefGoogle Scholar
  5. Gill, A. E. and P. Niiler, The theory of seasonal variability in the ocean, Deep Sea Res. Oceanogr. Abstr., 141, 141–177, 1973.CrossRefGoogle Scholar
  6. Köhl, A., D. Stammer, B. Cornuelle, E. Remy, Y. Lu, P. Heimbach, and C. Wunsch, The Global 1° WOCE Synthesis: 1992–2001, ECCO Rep. Ser., Rep. No. 20. Estimating the Circ. and Clim. of the Ocean, Jet Propul. Lab., Pasadena, Calif, 2002.Google Scholar
  7. Mangiarotti, S., A. Cazenave, L. Soudarin, and J. F. Cretaux, Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy, J. Geophys. Res., 106, 4277–4292, 2001.CrossRefGoogle Scholar
  8. Marshall, J., C. Hill, L. Perelman, and A. Adcroft, Hydrostatic, quasihydrostatic and nonhydrostatic ocean modeling, J. Geophys. Res., 102, 5733–5752, 1997a.CrossRefGoogle Scholar
  9. Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753–5766, 1997b.CrossRefGoogle Scholar
  10. Matsumoto, K., T. Sato, T. Takanezawa, and M. Ooe, GOTIC2: A program for computation of oceanic tidal loading effect, J. Geod. Soc. Japan, 47(1), 243–248, 2001.Google Scholar
  11. Munekane, H. and S. Matsuzaka, Nontidal ocean mass loading detected by GPS observations in the tropical Pacific region, Geophys. Res. Let., 31, L08602, 2004.Google Scholar
  12. Otsubo, T., Improving the analysis precision of satellite laser ranging data from centimeter to millimeter range, J. Geod. Soc. Japan, 51(1), 1–16, 2005.Google Scholar
  13. Otsubo, T. and G. M. Appleby, System-dependent center-of-mass correcion for spherical geodetic satellites, J. Geophys. Res., 108(B4), 2201, 2003.CrossRefGoogle Scholar
  14. Petrov, L. and J.-P. Boy, Study of the atmospheric pressure loading signal in very long baseline interferometry observations, J. Geophys. Res., 109, B03405, 2004.Google Scholar
  15. Sato, T., Y. Fukuda, Y. Aoyama et al., On the observed annual gravity variation and the effect of sea surface height variations, Phys. Earth Planet. Inter., 123, 45–63, 2001.CrossRefGoogle Scholar
  16. van Dam, T. M. and T. A. Herring, Detection of atmospheric pressure loading using very long baseline interferometry measurements, J. Geophys. Res., 99, 4505–4518, 1994.CrossRefGoogle Scholar
  17. van Dam, T. M. and J. Wahr, Modeling environment loading effects: A review, Phys. Chem. Earth, 23(9–10), 1077–1087, 1998.Google Scholar
  18. van Dam, T. M., G. Blewitt, and M. B. Heflin, Atmospheric pressure loading effects on Global Positioning System coordinate determinations, J. Geophys. Res., 99, 23,939–23,950, 1994.CrossRefGoogle Scholar
  19. van Dam, T., J. Wahr, P. C. D. Milly, A. B. Shmakin, G. Blewitt, D. Lavallee, and K. M. Larson, Crustal displacements due to continental water loading, Geophys. Res. Let., 28(4), 651–654, 2001.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2006

Authors and Affiliations

  • Hiroshi Takiguchi
    • 1
  • Toshimichi Otsubo
    • 2
  • Yoichi Fukuda
    • 1
  1. 1.Department of Geophysics, Graduate School of ScienceKyoto UniversitySakyo-ku, KyotoJapan
  2. 2.National Institute of Information and Communications TechnologyKashima, IbarakiJapan

Personalised recommendations