Earth, Planets and Space

, Volume 59, Issue 4, pp 193–200 | Cite as

Landwater variation in four major river basins of the Indochina peninsula as revealed by GRACE

  • Keiko Yamamoto
  • Yoichi Fukuda
  • Toshiyuki Nakaegawa
  • Jun Nishijima
Open Access


We estimated mass variations in four major river basins—the Mekong, Irrawaddy, Salween and Chao Phraya river basins—of the Indochina Peninsula using the newly released GRACE (Gravity Recovery and Climate Experiment) monthly gravity field solutions of UTCSR RL02 (University of Texas at Austin, Center for Space Research Release 02), JPL RL02 (Jet Propulsion Laboratory Release 02) and GFZ RL03 (GeoForschungsZentrum Potsdam Release 03). The estimated variations were compared with that calculated from a numerical model. The results show that there is a good agreement between the GRACE estimations and the model calculation for the Mekong and Irrawaddy basins, while the aggreement for the Salween and Chao Phraya basins is poor, mainly due to the spatial scale of the areas concerned. The comparison over the combined area of the four river basins shows fairly good agreement, although there are small quantitative discrepancies. The amplitudes of the annual signals of the GRACE solutions are 0.9- to 1.4-fold larger than that of the hydrological model, and the phases are delayed about 1 month compared with the model signal. The phase differences are probably due to improper treatments of the groundwater storage process in the hydrological model, suggesting that the GRACE data possibly provide constraints to the model parameters.

Key words

GRACE satellite gravity gravity variations water storage variations precise gravity measurements 


  1. Bettadpur, S., UTCSR Level-2 Processing Standards Document For Level-2 Product Release 0002 (Draft, November 4, 2005), GRACE 327-742 (CSR-GR-03-03), 2005.Google Scholar
  2. Chen, J. L., C. R. Wilson, J. S. Famiglietti, and M. Rodell, Spatial sensitivity of the Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations, J. Geophys. Res., 110, B08408, doi:10.1029/2004JB003536, 2005a.Google Scholar
  3. Chen, J. L., M. Rodell, C. R. Wilson, and J. S. Famiglietti, Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates, Geophys. Res. Lett., 32, L14405, doi:10.1029/2005GL022964, 2005b.CrossRefGoogle Scholar
  4. Chambers, D. P., J. Wahr, and R. S. Nerem, Preliminary observations of global ocean mass variations with GRACE, Geophys. Res. Lett., 31, L13310, doi:10.1029/2004GL020461, 2004.CrossRefGoogle Scholar
  5. Flechtner, F., GFZ Level-2 Processing Standards Document For Level-2 Product Release 0003 (Rev. 1.1, November 04, 2005), GRACE 327-743 (GR-GFZ-STD-001), 2005a.Google Scholar
  6. Flechtner, F., AOD1B Product Description Document (Rev. 2.1, November 04, 2005), GRACE 327-750 (GR-GFZ-AOD-0001), 2005b.Google Scholar
  7. Fukumori, I., R. Raghunath, L. Fu, and Y. Chao, Assimilation of TOPEX/POSEIDON data into a global ocean circulation model: How good are the results?, J. Geophys. Res., 104(C11), 25647–25666, doi:10. 1029/1999JC900193, 1999.CrossRefGoogle Scholar
  8. Han, S. C., C. K. Shum, C. Jekeli, C. Y. Kuo, C. Wilson, and K. W. Seo, Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancement, Geophys. J. Int., 163, 18–25, doi:10.1111/j.1365-246X.2005.02756.x, 2005.CrossRefGoogle Scholar
  9. Han, S. C., C. K. Shum, M. Bevis, J. Chen, and C. Y. Kuo, Crustal Dilatation Observed by GRACE After the 2004 Sumatra-Andaman Earthquake, Science, 33, 658–662, 2006.CrossRefGoogle Scholar
  10. Hosaka, M., D. Nohara, T. Nakaegawa, and S. Yukimoto, MRI Global River flow model using TRIP, J. Meteor. Soc. Jpn., 2006 (to be submitted).Google Scholar
  11. Kanzow, T., F. Flechtner, A. Chave, R. Schmidt, P. Schwitzer, and U. Send, Seasonal variation of ocean bottom pressure derived from Gravity Recovery and Climate Experiment (GRACE): Local variation and global patterns, J. Geophys. Res., 110, C09001, doi:10.1029/2004JC002772, 2005.Google Scholar
  12. Nohara, D., A. Kitoh, M. Hosaka, and T. Oki, Impact of Climate Change on River Discharge Projected by Multimodel Ensemble, J. Hydromet., 7, 1076–1089, doi:10.1175/JHM531.1, 2006.CrossRefGoogle Scholar
  13. Research Institute for Humanity and Nature, Research Project 2–4, Human Impacts on Urban Subsurface Environments,, 2005.Google Scholar
  14. Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann, and D. Toll, The Global Land Data Assimilation System, Bull. Amer. Meteor. Soc., 85, 381–394, doi:10. 1175/BAMS-85-3-381, 2004.CrossRefGoogle Scholar
  15. Sellers, P. J., Y. Mintz, Y. C. Sud, and A. Dalcher, Simple Biosphere model (SiB) for use within general circulation model, J. Atmos. Sci., 43, 505–531, 1988.CrossRefGoogle Scholar
  16. Swenson, S. and J. Wahr, Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity, J. Geophys. Res., 107(B9), 2193, doi:10.1029/2001JB000576, 2002.CrossRefGoogle Scholar
  17. Swenson, S., J. Wahr, and P. C. D. Milly, Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE), Water Resour. Res., 39(8), 1223, doi:10.1029/ 2002WR001808, 2003.CrossRefGoogle Scholar
  18. Swenson, S. and J. Wahr, Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett., 33, L08402, doi:10.1029/2005GL025285, 2006.Google Scholar
  19. Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, The Gravity Recovery and Climate Experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920, 2004a.CrossRefGoogle Scholar
  20. Tapley, B. D., S. Bettadpur, J. C. Ries, P. F. Thompson, and M. M. Watkins, GRACE Measurements of Mass Variability in the Earth System, Science, 203, 503–505, 2004b.CrossRefGoogle Scholar
  21. Velicogna, I. and J. Wahr, Measurements of Time-Variable Gravity Show Mass Loss in Antarctica, Science, 311, 1754–1756, 2006.CrossRefGoogle Scholar
  22. Wagner, C., D. Mcado, J. Klokocnik, and J. Kostelecky, Degradation of Geopotential Recovery from Short Repeat Cycle Orbits: Application to GRACE Monthly Fields, J. Geod., 80, 94–103, doi:10.1007/s00190-006-0036-x, 2006.CrossRefGoogle Scholar
  23. Wahr, J., M. Molenaar, and F. Bryan, Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103(B12), 30205–30229, doi:10.1029/98JB02844, 1998.CrossRefGoogle Scholar
  24. Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna, Time-variable gravity from GRACE: First results, Geophys. Res. Lett., 31, L11501, doi:10. 1029/2004GL019779, 2004.CrossRefGoogle Scholar
  25. Watkins, M. M., JPL Level-2 Processing Standards Document For Level-2 Product Release 02, GRACE 327-744, v2.0, 2005.Google Scholar
  26. Yamamoto, K., T. Otsubo, T. Kubooka, and Y. Fukuda, A simulation study of effects of GRACE orbit decay on the gravity field recovery, Earth Planets Space, 57, 291–295, 2005.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2007

Authors and Affiliations

  • Keiko Yamamoto
    • 1
  • Yoichi Fukuda
    • 1
  • Toshiyuki Nakaegawa
    • 2
  • Jun Nishijima
    • 3
  1. 1.Department of Geophysics, Graduate School of ScienceKyoto UniversityKyotoJapan
  2. 2.Climate Research DepartmentMeteorological Research InstituteTsukuba, IbarakiJapan
  3. 3.Department of Earth Resources Engineering, Graduate School of EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations