Skip to main content
Log in

Origin of the concentrated deformation zone in the Japanese Islands and stress accumulation process of intraplate earthquakes

  • Article
  • Published:
Earth, Planets and Space Submit manuscript

Abstract

The nature and origin of the concentrated deformation zone along the Japan Sea coast (NKTZ: Niigata-Kobe Tectonic Zone) were clarified by analyzing various observations. We made a qualitative modeling for the stress state and deformation style in and around the NKTZ. In this model a weak zone with low viscosity exists in the lower crust beneath the NKTZ. In the surrounding region, however, the viscosity in the lower crust is very high and can be regarded as elastic for the periods of a recurrence interval of intraplate earthquakes. The concentrated deformation is basically attributed to the low viscosity in the weak zone. In more details, the concentrated deformation is thought to be generated by a postseismic deformation of the weak zone to the previous large intraplate earthquake in the interseismic period (the brittle-ductile interaction model) and/or anelastic deformation in both the upper and lower crusts in the NKTZ, under a finite constant force (the anelastic deformation model).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki, K., Interrelation between fault zone structures and earthquake processes, Pure Appl. Geophys., 145, 647–676, 1995.

    Article  Google Scholar 

  • Aki, K., Scale dependence in earthquake phenomena and its relevance to earthquake prediction, Proc. Nat. Acad. Sci. USA, 93, 3740–3747, 1996.

    Article  Google Scholar 

  • Bell, T. H. and M. A. Etherridge, Microstructure of mylonite and their descriptive terminology, Lithos, 6, 337–348, 1973.

    Article  Google Scholar 

  • Byerlee, J. D., Friction of rocks, Pure and Appl. Geophys., 116, 615–626, 1978.

    Article  Google Scholar 

  • Fukuyama, E., A. Kubo, H. Kawai, and K. Nomura, Seismic remote monitoring of stress field, Earth Planets Space, 53, 1021–1026, 2001.

    Article  Google Scholar 

  • Griggs, D. T. and J. D. Blacic, Quartz-anomalous weakness of synthetic crystals, Science, 147, 292–295, 1965.

    Article  Google Scholar 

  • Heki, K. and S. Miyazaki, Plate convergence and long-term crustal deformation, Geophys. Res. Lett., 28, 2313–2316, 2001.

    Article  Google Scholar 

  • Heki, K., S. Miyazaki, H. Takahashi, et al., AMU motion and current plate kinematics in the eastern Asia, J. Geophys. Res., 104, 29147–29155, 1999.

    Article  Google Scholar 

  • Hirahara, K., M. Ando, Y. Hoso, Y. Wada, and T. Nakano, Search for the movement of an active fault by GPS measurements, Earth Monthly, 225, 149–153, 1998 (in Japanese).

    Google Scholar 

  • Hyodo, M. and K. Hirahara, A viscoelastic model of interseismic strain concentration in Niigata-Kobe Tectonic Zone of central Japan, Earth Planets Space, 55, 667–675, 2003.

    Article  Google Scholar 

  • Iio, Y., Depth-dependent change in the focal mechanisms of shallow earthquakes in a seismogenic region: Implications for the brittle-plastic transition, J. Geophys. Res., 101, 11209–11216, 1996a.

    Article  Google Scholar 

  • Iio, Y., A possible generating process of the 1995 Southern Hyogo prefecture earthquake—stick of fault and slip on detachment—, Zisin 2, 49, 103–112, 1996b.

    Google Scholar 

  • Iio, Y. and Y. Kobayashi, A physical understanding of large intraplate earthquakes, Earth Planets Space, 54, 1001–1004, 2002a.

    Article  Google Scholar 

  • Iio, Y. and Y. Kobayashi, Is the plastic flow uniformly distributed below the seismogenic region?, Earth Planets Space, 54, 1085–1090, 2002b.

    Article  Google Scholar 

  • Iio, Y., T. Sagiya, Y. Kobayashi, and I. Shiozaki, Water-weakened lower crust and its role in the concentrated deformation in the Japanese Islands, Earth Planet. Sci. Lett., 203, 245–253, 2002.

    Article  Google Scholar 

  • Ito, K., Regional variations of the cutoff depth of seismicity in the crust and their relation to heat flow and large inland-earthquakes, J. Phys. Earth, 38, 223–250, 1990.

    Article  Google Scholar 

  • Jin, A. and K. Aki, Spatial and temporal correlation between coda Q-1 and seismicity and its physical mechanism, J. Geophys. Res., 94, 14041–14059, 1989.

    Article  Google Scholar 

  • Jin, A. and K. Aki, Temporal correlation between coda Q-1 and seismicity—evidence for a structural unit in the brittle-ductile transition zone, J. Geodynamics, 17, 95–120, 1993.

    Article  Google Scholar 

  • Jones, A. G., Electrical conductivity of the continental lower crust, in Continental Lower Crust, edited by M. Fountain, R. Arculus, and R. W. Kay, Elsevier, pp. 81–143, 1992.

    Google Scholar 

  • Kaufmann, G. and F. Amelung, Reservior-induced deformation and continental rheology in vicinity of Lake Mead, Nevada, J. Geophys. Res., 105, 16341–16358, 2000.

    Article  Google Scholar 

  • Kitajima, T, Y. Kobayashi, R. Ikeda, Y. Iio, and K. Omura, Terrestrial heat flow in Hirabayashi, Awaji, Island, Island Arc, 10, 318–325, 2001.

    Article  Google Scholar 

  • Kohlstedt, D. L., B. Evans, and S. J. Mackwell, Strength of the lithosphere: Constraints imposed by laboratory experiments, J. Geophys. Res., 100, 17,587–17,602, 1995.

    Article  Google Scholar 

  • Kronenberg, A. K., P. Segall, and G. H. Wolf, Hydrolytic weakening and penetrative deformation within a natural shear zone, in The Brittle-ductile Transition in Rocks (The heard volume), edited by A. G. Duba, W. B. Durham, J. W. Handin, and H. F. Wang, Am. Geophys. Union, Geophys. Monogr., 56, 21–36, 1990.

    Article  Google Scholar 

  • Mazzotti, S., X. Le Pichon, and P. Henry, Full interseismic locking of the Nankai and Japan-west Kurile subduction zones: An analysis of uniform elastic strain accumulation in Japan constrained by permanent GPS, J. Geophys. Res., 105, 13159–13177, 2000.

    Article  Google Scholar 

  • Miyazaki, S. and K. Heki, Crustal velocity field of southwest Japan: Subduction and arc-arc collision, J. Geophys. Res., 106, 4305–4326, 2001.

    Article  Google Scholar 

  • Nakagawa, Y., I. Kawasaki, and Y. Ishizaki, A model of steady state faulting at depths for GPS surface displacements and the stress field in the Hida mountains in the Chubu district, central Honshu, Japan, Bull. Earthq. Res. Inst., 76, 135–143, 2001.

    Google Scholar 

  • Nishimura, T. and W. Thatcher, Rheology of the lithosphere inferred from postseismic uplift following the 1959 Hebgen Lake earthquake, J. Geophys. Res., 108, 2389, doi:10.1029/2002JB002191, 2003.

    Article  Google Scholar 

  • Research Group for Active Faults of Japan, Active faults in Japan, sheet maps and inventories, Univ. of Tokyo Press, Tokyo, 1980.

    Google Scholar 

  • Sagiya, T., A decade of GEONET: 1994–2003—The continuous GPS observation in Japan and its impact on earthquake studies, Earth Planets Space, 56, this issue, xxix–xli, 2004.

    Article  Google Scholar 

  • Sagiya, T., S. Miyazaki, and T. Tada, Continuous GPS array and present-day crustal deformation of Japan, Pageoph, 157, 2303–2322, 2000.

    Google Scholar 

  • Sano, O. and H. Wakita, Geographical distribution of 3He/4He ratios in Japan: Implications for arc tectonics and incipient magmatism, J. Geophys. Res., 88, 8729–8741, 1985.

    Article  Google Scholar 

  • Seno, T., Syntheses of the regional stress fields of the Japanese Islands, The Island Arc, 8, 66–79, 1999.

    Article  Google Scholar 

  • Shimada, K., H. Tanaka, T. Toyoshima, T. Obara, and T. Niizato, Occurrence of strain localized mylonite zones and its implication for seismogenesis at the bottom of upper crust: an example from southern Hidaka Metamorphic Belt, Hokkaido, Japan, Earth Planets Space, 2004 (submitted).

    Google Scholar 

  • Shimazaki, K. and Y. Zhao, Dislocation model for strain accumulation in a plate collision zone, Earth Planets Space, 52, 1091–1094, 2000.

    Article  Google Scholar 

  • Ueda, H., M. Ohtake, and H. Sato, Postseismic crustal deformation following the 1993 Hokkaido Nansei-oki earthquake, northern Japan: Evidence for a low-viscosity zone in the uppermost mantle, J. Geophys. Res., 108, No. B310.1029/2002JB002067, 2003.

  • Tanaka, H., K. Shimada, T. Toyoshima, T. Obara, and T. Niizato, Origin of the strain localization and its implication for seismogenesis at the bottom of upper crust, Earth Planets Space, 2004 (submitted).

    Google Scholar 

  • Utada, H., A direct inversion method for 2 dimensional modeling in the geomagnetic induction problem, PHD Thesis of Earthquake Res. Inst., the University of Tokyo, 1987.

    Google Scholar 

  • Utada, H., Y. Hamano, and J. Segawa, Conductivity anomaly around the Japanese islands, Geology and Geophysics of the Japan Sea (Japan-USSR Monograph Series, 1), pp. 103–149, 1996.

    Google Scholar 

  • Wesnousky, S. G., C. H. Scholz, and K. Shimazaki, Deformation of an island arc: Rate of moment release and crustal shortening in intraplate Japan determined from seismicity and quaternary fault data, J. Geophys. Res., 87, 6829–6852, 1982.

    Article  Google Scholar 

  • Yamano, M. and S. Goto, Long-term temperature monitoring in a borehole drilled into the Nojima fault, southwest Japan, The Island Arc, 10, 326–335, 2001.

    Article  Google Scholar 

  • Zhao, D., S. Horiuchi, and A. Hasegawa, Seismic velocity structure of the crust beneath the Japan islands, Tectonophysics, 212, 289–301, 1992.

    Article  Google Scholar 

  • Zoback, M. D. and M. L. Zoback, State of stress in the Earth’s lithosphere, in International Handbook of Earthquake and Engineering Seismology, Academic Press, Amsterdam, pp. 559–568, 2002.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihisa Iio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iio, Y., Sagiya, T. & Kobayashi, Y. Origin of the concentrated deformation zone in the Japanese Islands and stress accumulation process of intraplate earthquakes. Earth Planet Sp 56, 831–842 (2004). https://doi.org/10.1186/BF03353090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03353090

Key words

Navigation