Advertisement

Earth, Planets and Space

, Volume 60, Issue 5, pp 447–452 | Cite as

Deformation of the Augustine Volcano, Alaska, 1992–2005, measured by ERS and ENVISAT SAR interferometry

  • Chang-Wook LeeEmail author
  • Zhong Lu
  • Oh-Ig Kwoun
  • Joong-Sun Won
Open Access
Article

Abstract

The Augustine Volcano is a conical-shaped, active stratovolcano located on an island of the same name in Cook Inlet, about 290 km southwest of Anchorage, Alaska. Augustine has experienced seven significant explosive eruptions—in 1812, 1883, 1908, 1935, 1963, 1976, 1986, and in January 2006. To measure the ground surface deformation of the Augustine Volcano before the 2006 eruption, we applied satellite radar interferometry using Synthetic Aperture Radar (SAR) images from three descending and three ascending satellite tracks acquired by European Remote Sensing Satellite (ERS) 1 and 2 and the Environment Satellite (ENVISAT). Multiple interferograms were stacked to reduce artifacts caused by atmospheric conditions, and we used a singular value decomposition method to retrieve the temporal deformation history from several points on the island. Interferograms during 1992 and 2005 show a subsidence of about 1–3 cm/year, caused by the contraction of pyroclastic flow deposits from the 1986 eruption. Subsidence has decreased exponentially with time. Multiple interferograms between 1992 and 2005 show no significant inflation around the volcano before the 2006 eruption. The lack of a pre-eruption deformation signal suggests that the deformation signal from 1992 to August 2005 must have been very small and may have been obscured by atmospheric delay artifacts.

Key words

Surface deformation atmospheric effects interferograms pyroclastic flow deposits subsidence 

References

  1. Begét, J. E. and Z. Kowalik, Confirmation and Calibration of Computer Modeling of Tsunamis Produced by Augustine Volcano, Alaska, Sci. Tsunami Hazards, 24, 257, 2006.Google Scholar
  2. Berardino, P., G. Fornaro, R. Lanari, and E. Sansosti, A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms, IEEE Trans. Geosci. Remote Sensing, 40, 2,375–2,383, 2002.CrossRefGoogle Scholar
  3. Briole, P., D. Massonnet, and C. Delacourt, Post-eruptive deformation associated with the 1986-87 and 1989 laval flows of Etna detected by radar interferometry, Geophys. Res. Lett., 24, 37–40, 1997.CrossRefGoogle Scholar
  4. Dvorak, J. and D. Dzurisin, Volcano geodesy: The search for magma reservoirs and the formation of eruptive vents, Rev. Geophys., 35, 343–384, 1997.CrossRefGoogle Scholar
  5. Dzurisin, D., A comprehensive approach to monitoring volcano deformation as a window on eruption cycle, Rev. Geophys., 41, doi:10. 1029/2001RG000107, 2003.Google Scholar
  6. Lu, Z., InSAR Imaging of Volcanic Deformation Over Cloud-prone Areas-Aleutian Islands, Photogrammetric Eng. Remote Sensing, 73, 245–257, 2007.CrossRefGoogle Scholar
  7. Lu, Z., T. Masterlark, and D. Dzurisin, Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: Magma supply dynamics and postemplacement lava flow deformation, J. Geophys. Res., 110, doi:10.1029/2004JB00348, 2005.Google Scholar
  8. Lu, Z.,Jr., C. Wicks, D. Dzurisin, J. Power, W. Thatcher, and T. Masterlark, Interferometric Synthetic Aperture Radar Studies of Alaska Volcanoes, Earth Observation Mag., 12, 2003.Google Scholar
  9. Lundgren, P., F. Casu, M. Manzo, A. Pepe, P. Berardino, E. Sansosti, and R. Lanari, Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry, Geophys. Res. Lett., 31, 2004.Google Scholar
  10. Massonnet, D. and K. Feigl, Radar interferometry and its application to changes in the Earth’s surface, Rev. Geophys., 36,441–36,500, 1998.Google Scholar
  11. Masterlark, T., Z. Lu, and R. Rykhus, Thickness distribution of a cooling pyroclastic flow deposit on Augustine Volcano, Alaska: Optimization using InSAR, FEMs, and an adaptive mesh algorithm, J. Volcanol. Geoth. Res., 150, 186–201, 2006.CrossRefGoogle Scholar
  12. Menke, W., Geophysical data analysis: Descrete inverse theory, International Geophysics Series, Academic Press, 45, 289, 1989.Google Scholar
  13. Miller, T. M., R. G. McGimsey, D. H. Richter, J. R. Riehle, C. J. Nye, M. E. Yount, and J. A. Dumoulin, Catalog of the historically active volcanoes of Alaska, USGS Open-File Report, 98–582, 1998.Google Scholar
  14. Moran, S. C, O. Kwoun, T. Masterlark, and Z. Lu, On the absence of InSAR-detected volcano deformation spanning the 1995–1996 and 1999 eruptions of Shishaldin Volcano, Alaska, J. Volcanol. Geoth. Res., 150, 119–131, 2006.CrossRefGoogle Scholar
  15. Pritchard, M. E. and M. Simons, A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes, Nature, 418, 167–171, 2002.CrossRefGoogle Scholar
  16. Rosen, P., S. Hensley, I. R. Joughin, F K. Li, S. N. Madsen, E. Rodriguez, and R. M. Goldstein, Synthetic aperture radar interferometry, Proceedings IEEE, 88,333–88,380, 2000.Google Scholar
  17. Schmidt, D. A. and R. Bürgmann, Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set, J. Geophys. Res., 108, doi:10.1029/2002JB002267, 2003.Google Scholar
  18. Stevens, N. F, G. Wadge, C. A. Williams, J. G. Morley, J.-P. Muller, J. B. Murray, and M. Upton, J. Geophys. Res., 106, 11,293–11,313, 2001.CrossRefGoogle Scholar
  19. Turcotte, D. L. and G. J. Schubert, Geodynamics: Applications of continuum physics to geological problems, John Wiley & Sons, New York, 1982.Google Scholar
  20. Usai, S., A Least Squares Database Approach for SAR Interferometric Data, IEEE Transactions on Geoscience and Remote Sensing, 41, 753–760, 2003.CrossRefGoogle Scholar
  21. Waythomas, C. F and R. B. Waitt, Preliminary Volcano-Hazard Assessment for Augustine Volcano, Alaska, U.S. Geolog. Surv, Open File Re., 98–0106, 39, 1998.Google Scholar
  22. Wright, T. J., B. E. Parsons, and Z. Lu, Toward mapping surface deformation in three dimensions using InSAR, Geophys. Res. Lett., 31, L01607, doi:10.1029/2003GL018827, 2004.Google Scholar
  23. Zebker, H. A., F. Amelung, and S. Jonsson, Remote Sensing of Volcano Surface and Internal Processes Using Radar Interferometry, in Remote Sensing of Active Volcanism, Geophysical Monograph, Am. Geophys. Union, 116, 179–205, 2000.CrossRefGoogle Scholar
  24. Zebker, H. A., P. A. Rosen, and S. Hensley, Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps, J. Geophys. Res., 102, 7547–7563, 1997.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2008

Authors and Affiliations

  • Chang-Wook Lee
    • 1
    • 3
    Email author
  • Zhong Lu
    • 2
  • Oh-Ig Kwoun
    • 3
  • Joong-Sun Won
    • 1
  1. 1.Department of Earth System SciencesYonsei UniversitySeoulKorea
  2. 2.U.S. Geological SurveyUSA
  3. 3.SAICU.S. Geological Survey Center for Earth Resources Observation and ScienceSioux FallsUSA

Personalised recommendations