Earth, Planets and Space

, Volume 59, Issue 7, pp 685–695 | Cite as

On long-term trends in European geomagnetic observatory biases

  • Giuli VerbanacEmail author
  • Monika Korte
  • Mioara Mandea
Open Access


We investigated the European geomagnetic observatory biases over 42 years, considered as contributions of the crustal field, and generally assumed to be constant in time. To estimate these biases, we compared observatory annual means to predictions given by the continuous CM4 model, and to four other core field models for different epochs. Solar-cycle related external fields are clearly present in the residuals. Although well-known, no suitable model to minimise them exists. We found that an empirical approach, taking advantage of the homogeneity of the external influences in the European region, can minimise these influences. Their reduction is better than when the external field description included in the comprehensive CM4 model is used. At several locations clear long-term trends remain after subtraction of the core field and minimisation of external fields. We investigated whether they are due to an insufficient description of the core field secular variation by the CM4 model, or to changes in induced lithospheric fields.

Key words

Geomagnetism observatory data annual means 


  1. Alldredge, L., Effects of solar activity on annual means of geomagnetic components, J. Geophys. Res., 81, 2990–2996, 1976.CrossRefGoogle Scholar
  2. Cain, J. C., J. Frayser, L. Muth, and D. Schmitz, The use of Magsat data to determine secular variation, J. Geophys. Res., 88, 5903–5910, 1983.CrossRefGoogle Scholar
  3. Cain, J. C., Z. Wang, C. Kluth, and D. R. Schmitz, Derivation of a geomagnetic model ton = 63, Geophys. J. Roy. Astr. Soc, 97, 431–441, 1989.CrossRefGoogle Scholar
  4. Chambodut, A. and M. Mandea, Evidence for geomagnetic jerks in comprehensive model, Earth Planets Space, 57, 139–149, 2005.CrossRefGoogle Scholar
  5. Courtillot, V. and J.-L. Le Mouël, On the long period variations of the Earth’s magnetic field from 2 months to 20 years, J. Geophys. Res., 81, 2941–2950, 1976.CrossRefGoogle Scholar
  6. Gubbins, D. and J. Bloxham, Geomagnetic field ananlysis—III. Magnetic fields on the core-mantle boundary, Geophys. J. R. Astron. Soc, 80, 695–713,1985.CrossRefGoogle Scholar
  7. Jankowski, J. and C. Sucksdorff, IAGA Guide for magnetic measurements and observatory practice, International Association for Geomagnetism and Aeronomy, 1996.Google Scholar
  8. Langel, R. and W. Hinze, The magnetic field of the Earth’s lithosphere: The satellite perspective, Cambridge Univ. Press, 1998.CrossRefGoogle Scholar
  9. Langel, R. A., R. H. Estes, and G. D. Mead, Some new methods in geomagnetic field modeling applied to the 1960–1980 epoch, J. Geomag. Geoelectr., 34, 327–349, 1982.CrossRefGoogle Scholar
  10. Langel, R. A., R. H. Estes, and T. J. Sabaka, Uncertainty estimates in geomagnetic field modelling, J. Geophys. Res., 94, 12,281–12,299, 1989.CrossRefGoogle Scholar
  11. Lesur, V. and D. Gubbins, Using geomagnetic secular variation to separate remanent and induced sources of the crustal magnetic field, Geophys. J. Int., 142, 889–897, 2000.CrossRefGoogle Scholar
  12. Macmillan, S., S. Maus, T. Bondar, A. Chambodut, V. Golovkov, R. Holme, B. Langlais, V. Lesur, F. Lowes, H. Lühr, W. Mai, M. Mandea, N. Olsen, M. Rother, T. Sabaka, A. Thomson, and I. Wardinski, The 9th-generation International Geomagnetic Reference Field, Geophys. J. Int., 155, 1051–1056, 2003.CrossRefGoogle Scholar
  13. Macmillan, S. and A. Thomson, An examination of observatory biases during the Magsat and Ørsted missions, Phys. Earth Planet. Inter., 135, 97–105, 2003.CrossRefGoogle Scholar
  14. Mandea, M. and B. Langlais, Observatory crustal magnetic biases during MAGSAT and Oersted satellite missions, Geophys. Res. Lett., 29, 11–15, 2002.CrossRefGoogle Scholar
  15. Maus, S., A global lithospheric field model with reduced noise level polar regions, Geophys. Res. Let., 2006 (submitted).Google Scholar
  16. Maus, S., H. Lühr, G. Balasis, M. Rother, and M. Mandea, Introducing POMME, The Potsdam Magnetic Model of the Earth, In Earth Observation with CHAMP, Results from Three Years in Space, edited by C. Reigber, H. Lühr, P. Schwintzer, and J. Wickert, 293-298, Springer, Berlin-Heidelberg, 2005.Google Scholar
  17. Maus, S., M. Rother, K. Hemant, C. Stolle, H. Lühr, A. Kuvshinov, and N. Olsen, Earth’s lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements, Geophys. J. Int., 164, 319–330, 2006.CrossRefGoogle Scholar
  18. Maus, S., M. Rother, C. Stolle, W. Mai, S. Choi, H. Lühr, D. Cooke, and C. Roth, Third generation of the Potsdam Magnetic Model of the Earth (POMME), Geochem. Geophys. Geosys., 7, Q07008, doi:10.1029/ 2006GC001269, 2006.Google Scholar
  19. Sabaka, T., N. Olsen, and R. Langel, A comprehensive model of the quiet-time, near Earth magnetic field: Phase3, Geophys. J. Int., 151, 32–68, 2002.CrossRefGoogle Scholar
  20. Sabaka, T., N. Olsen, and M. Purucker, Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data, Geophys. J. Int., 159, 521–547, 2004.CrossRefGoogle Scholar
  21. Olsen, N., A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Ørsted data, Geophys. J. Int., 149, 455–463, 2002.Google Scholar
  22. Olsen, N., T. Sabaka, M. Mandea, M. Rother, L. T. Clausen, and S. Choi, CHAOS-a model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data, Geophys. J. Int., 166, 67–75, 2006.CrossRefGoogle Scholar
  23. Yukutake, T. and J. C. Cain, Solar Cycle Variations Annual Mean Values of the Geomagnetic Components of Observatory Data, J. Geomag. Geoelectr., 39, 19–46, 1987.CrossRefGoogle Scholar

Copyright information

© The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 2007

Authors and Affiliations

  1. 1.Faculty of ScienceUniversity of ZagrebZagrebCroatia
  2. 2.GeoForschungsZentrum PotsdamTelegrafenbergPotsdamGermany

Personalised recommendations